![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpsubadd0sub | Structured version Visualization version GIF version |
Description: Subtraction expressed as addition of the difference of the identity element and the subtrahend. (Contributed by AV, 9-Nov-2019.) |
Ref | Expression |
---|---|
grpsubid.b | ⊢ 𝐵 = (Base‘𝐺) |
grpsubid.o | ⊢ 0 = (0g‘𝐺) |
grpsubid.m | ⊢ − = (-g‘𝐺) |
grpsubadd0sub.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
grpsubadd0sub | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + ( 0 − 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsubid.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpsubadd0sub.p | . . . 4 ⊢ + = (+g‘𝐺) | |
3 | eqid 2724 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
4 | grpsubid.m | . . . 4 ⊢ − = (-g‘𝐺) | |
5 | 1, 2, 3, 4 | grpsubval 18902 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + ((invg‘𝐺)‘𝑌))) |
6 | 5 | 3adant1 1127 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + ((invg‘𝐺)‘𝑌))) |
7 | grpsubid.o | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
8 | 1, 4, 3, 7 | grpinvval2 18938 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) = ( 0 − 𝑌)) |
9 | 8 | 3adant2 1128 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) = ( 0 − 𝑌)) |
10 | 9 | oveq2d 7417 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + ((invg‘𝐺)‘𝑌)) = (𝑋 + ( 0 − 𝑌))) |
11 | 6, 10 | eqtrd 2764 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + ( 0 − 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ‘cfv 6533 (class class class)co 7401 Basecbs 17140 +gcplusg 17193 0gc0g 17381 Grpcgrp 18850 invgcminusg 18851 -gcsg 18852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-0g 17383 df-mgm 18560 df-sgrp 18639 df-mnd 18655 df-grp 18853 df-minusg 18854 df-sbg 18855 |
This theorem is referenced by: chfacfscmulgsum 22672 chfacfpmmulgsum 22676 |
Copyright terms: Public domain | W3C validator |