MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubadd0sub Structured version   Visualization version   GIF version

Theorem grpsubadd0sub 18959
Description: Subtraction expressed as addition of the difference of the identity element and the subtrahend. (Contributed by AV, 9-Nov-2019.)
Hypotheses
Ref Expression
grpsubid.b 𝐵 = (Base‘𝐺)
grpsubid.o 0 = (0g𝐺)
grpsubid.m = (-g𝐺)
grpsubadd0sub.p + = (+g𝐺)
Assertion
Ref Expression
grpsubadd0sub ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋 + ( 0 𝑌)))

Proof of Theorem grpsubadd0sub
StepHypRef Expression
1 grpsubid.b . . . 4 𝐵 = (Base‘𝐺)
2 grpsubadd0sub.p . . . 4 + = (+g𝐺)
3 eqid 2729 . . . 4 (invg𝐺) = (invg𝐺)
4 grpsubid.m . . . 4 = (-g𝐺)
51, 2, 3, 4grpsubval 18917 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋 + ((invg𝐺)‘𝑌)))
653adant1 1130 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋 + ((invg𝐺)‘𝑌)))
7 grpsubid.o . . . . 5 0 = (0g𝐺)
81, 4, 3, 7grpinvval2 18955 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((invg𝐺)‘𝑌) = ( 0 𝑌))
983adant2 1131 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((invg𝐺)‘𝑌) = ( 0 𝑌))
109oveq2d 7403 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + ((invg𝐺)‘𝑌)) = (𝑋 + ( 0 𝑌)))
116, 10eqtrd 2764 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋 + ( 0 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  0gc0g 17402  Grpcgrp 18865  invgcminusg 18866  -gcsg 18867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870
This theorem is referenced by:  chfacfscmulgsum  22747  chfacfpmmulgsum  22751
  Copyright terms: Public domain W3C validator