MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubadd0sub Structured version   Visualization version   GIF version

Theorem grpsubadd0sub 18267
Description: Subtraction expressed as addition of the difference of the identity element and the subtrahend. (Contributed by AV, 9-Nov-2019.)
Hypotheses
Ref Expression
grpsubid.b 𝐵 = (Base‘𝐺)
grpsubid.o 0 = (0g𝐺)
grpsubid.m = (-g𝐺)
grpsubadd0sub.p + = (+g𝐺)
Assertion
Ref Expression
grpsubadd0sub ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋 + ( 0 𝑌)))

Proof of Theorem grpsubadd0sub
StepHypRef Expression
1 grpsubid.b . . . 4 𝐵 = (Base‘𝐺)
2 grpsubadd0sub.p . . . 4 + = (+g𝐺)
3 eqid 2758 . . . 4 (invg𝐺) = (invg𝐺)
4 grpsubid.m . . . 4 = (-g𝐺)
51, 2, 3, 4grpsubval 18230 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋 + ((invg𝐺)‘𝑌)))
653adant1 1127 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋 + ((invg𝐺)‘𝑌)))
7 grpsubid.o . . . . 5 0 = (0g𝐺)
81, 4, 3, 7grpinvval2 18263 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((invg𝐺)‘𝑌) = ( 0 𝑌))
983adant2 1128 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((invg𝐺)‘𝑌) = ( 0 𝑌))
109oveq2d 7172 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + ((invg𝐺)‘𝑌)) = (𝑋 + ( 0 𝑌)))
116, 10eqtrd 2793 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋 + ( 0 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2111  cfv 6340  (class class class)co 7156  Basecbs 16555  +gcplusg 16637  0gc0g 16785  Grpcgrp 18183  invgcminusg 18184  -gcsg 18185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7699  df-2nd 7700  df-0g 16787  df-mgm 17932  df-sgrp 17981  df-mnd 17992  df-grp 18186  df-minusg 18187  df-sbg 18188
This theorem is referenced by:  chfacfscmulgsum  21574  chfacfpmmulgsum  21578
  Copyright terms: Public domain W3C validator