Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpsubadd0sub | Structured version Visualization version GIF version |
Description: Subtraction expressed as addition of the difference of the identity element and the subtrahend. (Contributed by AV, 9-Nov-2019.) |
Ref | Expression |
---|---|
grpsubid.b | ⊢ 𝐵 = (Base‘𝐺) |
grpsubid.o | ⊢ 0 = (0g‘𝐺) |
grpsubid.m | ⊢ − = (-g‘𝐺) |
grpsubadd0sub.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
grpsubadd0sub | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + ( 0 − 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsubid.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpsubadd0sub.p | . . . 4 ⊢ + = (+g‘𝐺) | |
3 | eqid 2758 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
4 | grpsubid.m | . . . 4 ⊢ − = (-g‘𝐺) | |
5 | 1, 2, 3, 4 | grpsubval 18230 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + ((invg‘𝐺)‘𝑌))) |
6 | 5 | 3adant1 1127 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + ((invg‘𝐺)‘𝑌))) |
7 | grpsubid.o | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
8 | 1, 4, 3, 7 | grpinvval2 18263 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) = ( 0 − 𝑌)) |
9 | 8 | 3adant2 1128 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) = ( 0 − 𝑌)) |
10 | 9 | oveq2d 7172 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + ((invg‘𝐺)‘𝑌)) = (𝑋 + ( 0 − 𝑌))) |
11 | 6, 10 | eqtrd 2793 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + ( 0 − 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ‘cfv 6340 (class class class)co 7156 Basecbs 16555 +gcplusg 16637 0gc0g 16785 Grpcgrp 18183 invgcminusg 18184 -gcsg 18185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-1st 7699 df-2nd 7700 df-0g 16787 df-mgm 17932 df-sgrp 17981 df-mnd 17992 df-grp 18186 df-minusg 18187 df-sbg 18188 |
This theorem is referenced by: chfacfscmulgsum 21574 chfacfpmmulgsum 21578 |
Copyright terms: Public domain | W3C validator |