| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpsubadd0sub | Structured version Visualization version GIF version | ||
| Description: Subtraction expressed as addition of the difference of the identity element and the subtrahend. (Contributed by AV, 9-Nov-2019.) |
| Ref | Expression |
|---|---|
| grpsubid.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpsubid.o | ⊢ 0 = (0g‘𝐺) |
| grpsubid.m | ⊢ − = (-g‘𝐺) |
| grpsubadd0sub.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| grpsubadd0sub | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + ( 0 − 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubid.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grpsubadd0sub.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 3 | eqid 2734 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 4 | grpsubid.m | . . . 4 ⊢ − = (-g‘𝐺) | |
| 5 | 1, 2, 3, 4 | grpsubval 18973 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + ((invg‘𝐺)‘𝑌))) |
| 6 | 5 | 3adant1 1130 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + ((invg‘𝐺)‘𝑌))) |
| 7 | grpsubid.o | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
| 8 | 1, 4, 3, 7 | grpinvval2 19011 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) = ( 0 − 𝑌)) |
| 9 | 8 | 3adant2 1131 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) = ( 0 − 𝑌)) |
| 10 | 9 | oveq2d 7429 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + ((invg‘𝐺)‘𝑌)) = (𝑋 + ( 0 − 𝑌))) |
| 11 | 6, 10 | eqtrd 2769 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + ( 0 − 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ‘cfv 6541 (class class class)co 7413 Basecbs 17230 +gcplusg 17274 0gc0g 17456 Grpcgrp 18921 invgcminusg 18922 -gcsg 18923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-0g 17458 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-sbg 18926 |
| This theorem is referenced by: chfacfscmulgsum 22815 chfacfpmmulgsum 22819 |
| Copyright terms: Public domain | W3C validator |