Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpsubval | Structured version Visualization version GIF version |
Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 13-Dec-2014.) |
Ref | Expression |
---|---|
grpsubval.b | ⊢ 𝐵 = (Base‘𝐺) |
grpsubval.p | ⊢ + = (+g‘𝐺) |
grpsubval.i | ⊢ 𝐼 = (invg‘𝐺) |
grpsubval.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
grpsubval | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + (𝐼‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7220 | . 2 ⊢ (𝑥 = 𝑋 → (𝑥 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑦))) | |
2 | fveq2 6717 | . . 3 ⊢ (𝑦 = 𝑌 → (𝐼‘𝑦) = (𝐼‘𝑌)) | |
3 | 2 | oveq2d 7229 | . 2 ⊢ (𝑦 = 𝑌 → (𝑋 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑌))) |
4 | grpsubval.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
5 | grpsubval.p | . . 3 ⊢ + = (+g‘𝐺) | |
6 | grpsubval.i | . . 3 ⊢ 𝐼 = (invg‘𝐺) | |
7 | grpsubval.m | . . 3 ⊢ − = (-g‘𝐺) | |
8 | 4, 5, 6, 7 | grpsubfval 18411 | . 2 ⊢ − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦))) |
9 | ovex 7246 | . 2 ⊢ (𝑋 + (𝐼‘𝑌)) ∈ V | |
10 | 1, 3, 8, 9 | ovmpo 7369 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + (𝐼‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 +gcplusg 16802 invgcminusg 18366 -gcsg 18367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-1st 7761 df-2nd 7762 df-sbg 18370 |
This theorem is referenced by: grpsubinv 18436 grpsubrcan 18444 grpinvsub 18445 grpinvval2 18446 grpsubid 18447 grpsubid1 18448 grpsubeq0 18449 grpsubadd0sub 18450 grpsubadd 18451 grpsubsub 18452 grpaddsubass 18453 grpnpcan 18455 pwssub 18477 mulgsubdir 18531 subgsubcl 18554 subgsub 18555 issubg4 18562 qussub 18604 ghmsub 18630 sylow2blem1 19009 lsmelvalm 19040 ablsub2inv 19196 ablsub4 19198 ablsubsub4 19204 mulgsubdi 19215 eqgabl 19220 gsumsub 19333 dprdfsub 19408 ringsubdi 19617 rngsubdir 19618 abvsubtri 19871 lmodvsubval2 19954 lmodsubdir 19957 lspsntrim 20135 cnfldsub 20391 m2detleiblem7 21524 chpscmatgsumbin 21741 tgpconncomp 23010 tsmssub 23046 tsmsxplem1 23050 isngp4 23510 ngpsubcan 23512 ngptgp 23534 tngngp3 23554 clmpm1dir 24000 cphipval 24140 deg1suble 25005 deg1sub 25006 dchr2sum 26154 ogrpsub 31061 symgsubg 31075 cycpmconjv 31128 archiabllem2c 31168 linds2eq 31289 lflsub 36818 ldualvsubval 36908 lcdvsubval 39369 baerlem3lem1 39458 baerlem5alem1 39459 baerlem5amN 39467 baerlem5bmN 39468 baerlem5abmN 39469 hdmapsub 39598 nelsubgsubcld 39935 |
Copyright terms: Public domain | W3C validator |