![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpsubval | Structured version Visualization version GIF version |
Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 13-Dec-2014.) |
Ref | Expression |
---|---|
grpsubval.b | ⊢ 𝐵 = (Base‘𝐺) |
grpsubval.p | ⊢ + = (+g‘𝐺) |
grpsubval.i | ⊢ 𝐼 = (invg‘𝐺) |
grpsubval.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
grpsubval | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + (𝐼‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7455 | . 2 ⊢ (𝑥 = 𝑋 → (𝑥 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑦))) | |
2 | fveq2 6920 | . . 3 ⊢ (𝑦 = 𝑌 → (𝐼‘𝑦) = (𝐼‘𝑌)) | |
3 | 2 | oveq2d 7464 | . 2 ⊢ (𝑦 = 𝑌 → (𝑋 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑌))) |
4 | grpsubval.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
5 | grpsubval.p | . . 3 ⊢ + = (+g‘𝐺) | |
6 | grpsubval.i | . . 3 ⊢ 𝐼 = (invg‘𝐺) | |
7 | grpsubval.m | . . 3 ⊢ − = (-g‘𝐺) | |
8 | 4, 5, 6, 7 | grpsubfval 19023 | . 2 ⊢ − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦))) |
9 | ovex 7481 | . 2 ⊢ (𝑋 + (𝐼‘𝑌)) ∈ V | |
10 | 1, 3, 8, 9 | ovmpo 7610 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + (𝐼‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 invgcminusg 18974 -gcsg 18975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-sbg 18978 |
This theorem is referenced by: grpsubinv 19052 grpsubrcan 19061 grpinvsub 19062 grpinvval2 19063 grpsubid 19064 grpsubid1 19065 grpsubeq0 19066 grpsubadd0sub 19067 grpsubadd 19068 grpsubsub 19069 grpaddsubass 19070 grpnpcan 19072 pwssub 19094 mulgsubdir 19154 subgsubcl 19177 subgsub 19178 issubg4 19185 qussub 19231 ghmsub 19264 sylow2blem1 19662 lsmelvalm 19693 ablsub2inv 19850 ablsub4 19852 ablsubsub4 19860 mulgsubdi 19871 eqgabl 19876 gsumsub 19990 dprdfsub 20065 rngsubdi 20198 rngsubdir 20199 abvsubtri 20850 lmodvsubval2 20937 lmodsubdir 20940 lspsntrim 21120 cnfldsub 21433 m2detleiblem7 22654 chpscmatgsumbin 22871 tgpconncomp 24142 tsmssub 24178 tsmsxplem1 24182 isngp4 24646 ngpsubcan 24648 ngptgp 24670 tngngp3 24698 clmpm1dir 25155 cphipval 25296 deg1suble 26166 deg1sub 26167 dchr2sum 27335 ogrpsub 33066 symgsubg 33080 cycpmconjv 33135 archiabllem2c 33175 linds2eq 33374 ressply1sub 33560 r1padd1 33593 ply1divalg3 35610 lflsub 39023 ldualvsubval 39113 lcdvsubval 41575 baerlem3lem1 41664 baerlem5alem1 41665 baerlem5amN 41673 baerlem5bmN 41674 baerlem5abmN 41675 hdmapsub 41804 nelsubgsubcld 42453 |
Copyright terms: Public domain | W3C validator |