| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpsubval | Structured version Visualization version GIF version | ||
| Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 13-Dec-2014.) |
| Ref | Expression |
|---|---|
| grpsubval.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpsubval.p | ⊢ + = (+g‘𝐺) |
| grpsubval.i | ⊢ 𝐼 = (invg‘𝐺) |
| grpsubval.m | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| grpsubval | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + (𝐼‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7359 | . 2 ⊢ (𝑥 = 𝑋 → (𝑥 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑦))) | |
| 2 | fveq2 6828 | . . 3 ⊢ (𝑦 = 𝑌 → (𝐼‘𝑦) = (𝐼‘𝑌)) | |
| 3 | 2 | oveq2d 7368 | . 2 ⊢ (𝑦 = 𝑌 → (𝑋 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑌))) |
| 4 | grpsubval.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | grpsubval.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 6 | grpsubval.i | . . 3 ⊢ 𝐼 = (invg‘𝐺) | |
| 7 | grpsubval.m | . . 3 ⊢ − = (-g‘𝐺) | |
| 8 | 4, 5, 6, 7 | grpsubfval 18898 | . 2 ⊢ − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦))) |
| 9 | ovex 7385 | . 2 ⊢ (𝑋 + (𝐼‘𝑌)) ∈ V | |
| 10 | 1, 3, 8, 9 | ovmpo 7512 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + (𝐼‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 +gcplusg 17163 invgcminusg 18849 -gcsg 18850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-sbg 18853 |
| This theorem is referenced by: grpsubinv 18927 grpsubrcan 18936 grpinvsub 18937 grpinvval2 18938 grpsubid 18939 grpsubid1 18940 grpsubeq0 18941 grpsubadd0sub 18942 grpsubadd 18943 grpsubsub 18944 grpaddsubass 18945 grpnpcan 18947 pwssub 18969 mulgsubdir 19029 subgsubcl 19052 subgsub 19053 issubg4 19060 qussub 19105 ghmsub 19138 sylow2blem1 19534 lsmelvalm 19565 ablsub2inv 19722 ablsub4 19724 ablsubsub4 19732 mulgsubdi 19743 eqgabl 19748 gsumsub 19862 dprdfsub 19937 ogrpsub 20051 rngsubdi 20091 rngsubdir 20092 abvsubtri 20744 lmodvsubval2 20852 lmodsubdir 20855 lspsntrim 21034 cnfldsub 21336 m2detleiblem7 22543 chpscmatgsumbin 22760 tgpconncomp 24029 tsmssub 24065 tsmsxplem1 24069 isngp4 24528 ngpsubcan 24530 ngptgp 24552 tngngp3 24572 clmpm1dir 25031 cphipval 25171 deg1suble 26040 deg1sub 26041 dchr2sum 27212 symgsubg 33063 cycpmconjv 33118 archiabllem2c 33171 linds2eq 33353 ressply1sub 33540 r1padd1 33575 ply1divalg3 35707 lflsub 39186 ldualvsubval 39276 lcdvsubval 41737 baerlem3lem1 41826 baerlem5alem1 41827 baerlem5amN 41835 baerlem5bmN 41836 baerlem5abmN 41837 hdmapsub 41966 nelsubgsubcld 42616 |
| Copyright terms: Public domain | W3C validator |