| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpsubval | Structured version Visualization version GIF version | ||
| Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 13-Dec-2014.) |
| Ref | Expression |
|---|---|
| grpsubval.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpsubval.p | ⊢ + = (+g‘𝐺) |
| grpsubval.i | ⊢ 𝐼 = (invg‘𝐺) |
| grpsubval.m | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| grpsubval | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + (𝐼‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7353 | . 2 ⊢ (𝑥 = 𝑋 → (𝑥 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑦))) | |
| 2 | fveq2 6822 | . . 3 ⊢ (𝑦 = 𝑌 → (𝐼‘𝑦) = (𝐼‘𝑌)) | |
| 3 | 2 | oveq2d 7362 | . 2 ⊢ (𝑦 = 𝑌 → (𝑋 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑌))) |
| 4 | grpsubval.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | grpsubval.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 6 | grpsubval.i | . . 3 ⊢ 𝐼 = (invg‘𝐺) | |
| 7 | grpsubval.m | . . 3 ⊢ − = (-g‘𝐺) | |
| 8 | 4, 5, 6, 7 | grpsubfval 18893 | . 2 ⊢ − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦))) |
| 9 | ovex 7379 | . 2 ⊢ (𝑋 + (𝐼‘𝑌)) ∈ V | |
| 10 | 1, 3, 8, 9 | ovmpo 7506 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + (𝐼‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 +gcplusg 17158 invgcminusg 18844 -gcsg 18845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-sbg 18848 |
| This theorem is referenced by: grpsubinv 18922 grpsubrcan 18931 grpinvsub 18932 grpinvval2 18933 grpsubid 18934 grpsubid1 18935 grpsubeq0 18936 grpsubadd0sub 18937 grpsubadd 18938 grpsubsub 18939 grpaddsubass 18940 grpnpcan 18942 pwssub 18964 mulgsubdir 19024 subgsubcl 19047 subgsub 19048 issubg4 19055 qussub 19101 ghmsub 19134 sylow2blem1 19530 lsmelvalm 19561 ablsub2inv 19718 ablsub4 19720 ablsubsub4 19728 mulgsubdi 19739 eqgabl 19744 gsumsub 19858 dprdfsub 19933 ogrpsub 20047 rngsubdi 20087 rngsubdir 20088 abvsubtri 20740 lmodvsubval2 20848 lmodsubdir 20851 lspsntrim 21030 cnfldsub 21332 m2detleiblem7 22540 chpscmatgsumbin 22757 tgpconncomp 24026 tsmssub 24062 tsmsxplem1 24066 isngp4 24525 ngpsubcan 24527 ngptgp 24549 tngngp3 24569 clmpm1dir 25028 cphipval 25168 deg1suble 26037 deg1sub 26038 dchr2sum 27209 symgsubg 33051 cycpmconjv 33106 archiabllem2c 33159 linds2eq 33341 ressply1sub 33528 r1padd1 33563 ply1divalg3 35674 lflsub 39105 ldualvsubval 39195 lcdvsubval 41656 baerlem3lem1 41745 baerlem5alem1 41746 baerlem5amN 41754 baerlem5bmN 41755 baerlem5abmN 41756 hdmapsub 41885 nelsubgsubcld 42530 |
| Copyright terms: Public domain | W3C validator |