| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpsubval | Structured version Visualization version GIF version | ||
| Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 13-Dec-2014.) |
| Ref | Expression |
|---|---|
| grpsubval.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpsubval.p | ⊢ + = (+g‘𝐺) |
| grpsubval.i | ⊢ 𝐼 = (invg‘𝐺) |
| grpsubval.m | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| grpsubval | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + (𝐼‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7417 | . 2 ⊢ (𝑥 = 𝑋 → (𝑥 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑦))) | |
| 2 | fveq2 6881 | . . 3 ⊢ (𝑦 = 𝑌 → (𝐼‘𝑦) = (𝐼‘𝑌)) | |
| 3 | 2 | oveq2d 7426 | . 2 ⊢ (𝑦 = 𝑌 → (𝑋 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑌))) |
| 4 | grpsubval.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | grpsubval.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 6 | grpsubval.i | . . 3 ⊢ 𝐼 = (invg‘𝐺) | |
| 7 | grpsubval.m | . . 3 ⊢ − = (-g‘𝐺) | |
| 8 | 4, 5, 6, 7 | grpsubfval 18971 | . 2 ⊢ − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦))) |
| 9 | ovex 7443 | . 2 ⊢ (𝑋 + (𝐼‘𝑌)) ∈ V | |
| 10 | 1, 3, 8, 9 | ovmpo 7572 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + (𝐼‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 invgcminusg 18922 -gcsg 18923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-sbg 18926 |
| This theorem is referenced by: grpsubinv 19000 grpsubrcan 19009 grpinvsub 19010 grpinvval2 19011 grpsubid 19012 grpsubid1 19013 grpsubeq0 19014 grpsubadd0sub 19015 grpsubadd 19016 grpsubsub 19017 grpaddsubass 19018 grpnpcan 19020 pwssub 19042 mulgsubdir 19102 subgsubcl 19125 subgsub 19126 issubg4 19133 qussub 19179 ghmsub 19212 sylow2blem1 19606 lsmelvalm 19637 ablsub2inv 19794 ablsub4 19796 ablsubsub4 19804 mulgsubdi 19815 eqgabl 19820 gsumsub 19934 dprdfsub 20009 rngsubdi 20136 rngsubdir 20137 abvsubtri 20792 lmodvsubval2 20879 lmodsubdir 20882 lspsntrim 21061 cnfldsub 21365 m2detleiblem7 22570 chpscmatgsumbin 22787 tgpconncomp 24056 tsmssub 24092 tsmsxplem1 24096 isngp4 24556 ngpsubcan 24558 ngptgp 24580 tngngp3 24600 clmpm1dir 25059 cphipval 25200 deg1suble 26069 deg1sub 26070 dchr2sum 27241 ogrpsub 33089 symgsubg 33103 cycpmconjv 33158 archiabllem2c 33198 linds2eq 33401 ressply1sub 33588 r1padd1 33622 ply1divalg3 35669 lflsub 39090 ldualvsubval 39180 lcdvsubval 41642 baerlem3lem1 41731 baerlem5alem1 41732 baerlem5amN 41740 baerlem5bmN 41741 baerlem5abmN 41742 hdmapsub 41871 nelsubgsubcld 42488 |
| Copyright terms: Public domain | W3C validator |