| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpsubval | Structured version Visualization version GIF version | ||
| Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 13-Dec-2014.) |
| Ref | Expression |
|---|---|
| grpsubval.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpsubval.p | ⊢ + = (+g‘𝐺) |
| grpsubval.i | ⊢ 𝐼 = (invg‘𝐺) |
| grpsubval.m | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| grpsubval | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + (𝐼‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7360 | . 2 ⊢ (𝑥 = 𝑋 → (𝑥 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑦))) | |
| 2 | fveq2 6826 | . . 3 ⊢ (𝑦 = 𝑌 → (𝐼‘𝑦) = (𝐼‘𝑌)) | |
| 3 | 2 | oveq2d 7369 | . 2 ⊢ (𝑦 = 𝑌 → (𝑋 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑌))) |
| 4 | grpsubval.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | grpsubval.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 6 | grpsubval.i | . . 3 ⊢ 𝐼 = (invg‘𝐺) | |
| 7 | grpsubval.m | . . 3 ⊢ − = (-g‘𝐺) | |
| 8 | 4, 5, 6, 7 | grpsubfval 18880 | . 2 ⊢ − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦))) |
| 9 | ovex 7386 | . 2 ⊢ (𝑋 + (𝐼‘𝑌)) ∈ V | |
| 10 | 1, 3, 8, 9 | ovmpo 7513 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + (𝐼‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 invgcminusg 18831 -gcsg 18832 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-sbg 18835 |
| This theorem is referenced by: grpsubinv 18909 grpsubrcan 18918 grpinvsub 18919 grpinvval2 18920 grpsubid 18921 grpsubid1 18922 grpsubeq0 18923 grpsubadd0sub 18924 grpsubadd 18925 grpsubsub 18926 grpaddsubass 18927 grpnpcan 18929 pwssub 18951 mulgsubdir 19011 subgsubcl 19034 subgsub 19035 issubg4 19042 qussub 19088 ghmsub 19121 sylow2blem1 19517 lsmelvalm 19548 ablsub2inv 19705 ablsub4 19707 ablsubsub4 19715 mulgsubdi 19726 eqgabl 19731 gsumsub 19845 dprdfsub 19920 ogrpsub 20034 rngsubdi 20074 rngsubdir 20075 abvsubtri 20730 lmodvsubval2 20838 lmodsubdir 20841 lspsntrim 21020 cnfldsub 21322 m2detleiblem7 22530 chpscmatgsumbin 22747 tgpconncomp 24016 tsmssub 24052 tsmsxplem1 24056 isngp4 24516 ngpsubcan 24518 ngptgp 24540 tngngp3 24560 clmpm1dir 25019 cphipval 25159 deg1suble 26028 deg1sub 26029 dchr2sum 27200 symgsubg 33042 cycpmconjv 33097 archiabllem2c 33147 linds2eq 33328 ressply1sub 33515 r1padd1 33549 ply1divalg3 35614 lflsub 39045 ldualvsubval 39135 lcdvsubval 41597 baerlem3lem1 41686 baerlem5alem1 41687 baerlem5amN 41695 baerlem5bmN 41696 baerlem5abmN 41697 hdmapsub 41826 nelsubgsubcld 42471 |
| Copyright terms: Public domain | W3C validator |