![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpsubval | Structured version Visualization version GIF version |
Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 13-Dec-2014.) |
Ref | Expression |
---|---|
grpsubval.b | ⊢ 𝐵 = (Base‘𝐺) |
grpsubval.p | ⊢ + = (+g‘𝐺) |
grpsubval.i | ⊢ 𝐼 = (invg‘𝐺) |
grpsubval.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
grpsubval | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + (𝐼‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7416 | . 2 ⊢ (𝑥 = 𝑋 → (𝑥 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑦))) | |
2 | fveq2 6892 | . . 3 ⊢ (𝑦 = 𝑌 → (𝐼‘𝑦) = (𝐼‘𝑌)) | |
3 | 2 | oveq2d 7425 | . 2 ⊢ (𝑦 = 𝑌 → (𝑋 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑌))) |
4 | grpsubval.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
5 | grpsubval.p | . . 3 ⊢ + = (+g‘𝐺) | |
6 | grpsubval.i | . . 3 ⊢ 𝐼 = (invg‘𝐺) | |
7 | grpsubval.m | . . 3 ⊢ − = (-g‘𝐺) | |
8 | 4, 5, 6, 7 | grpsubfval 18868 | . 2 ⊢ − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦))) |
9 | ovex 7442 | . 2 ⊢ (𝑋 + (𝐼‘𝑌)) ∈ V | |
10 | 1, 3, 8, 9 | ovmpo 7568 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + (𝐼‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ‘cfv 6544 (class class class)co 7409 Basecbs 17144 +gcplusg 17197 invgcminusg 18820 -gcsg 18821 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-sbg 18824 |
This theorem is referenced by: grpsubinv 18896 grpsubrcan 18904 grpinvsub 18905 grpinvval2 18906 grpsubid 18907 grpsubid1 18908 grpsubeq0 18909 grpsubadd0sub 18910 grpsubadd 18911 grpsubsub 18912 grpaddsubass 18913 grpnpcan 18915 pwssub 18937 mulgsubdir 18994 subgsubcl 19017 subgsub 19018 issubg4 19025 qussub 19070 ghmsub 19100 sylow2blem1 19488 lsmelvalm 19519 ablsub2inv 19676 ablsub4 19678 ablsubsub4 19686 mulgsubdi 19697 eqgabl 19702 gsumsub 19816 dprdfsub 19891 ringsubdi 20119 ringsubdir 20120 abvsubtri 20443 lmodvsubval2 20527 lmodsubdir 20530 lspsntrim 20709 cnfldsub 20973 m2detleiblem7 22129 chpscmatgsumbin 22346 tgpconncomp 23617 tsmssub 23653 tsmsxplem1 23657 isngp4 24121 ngpsubcan 24123 ngptgp 24145 tngngp3 24173 clmpm1dir 24619 cphipval 24760 deg1suble 25625 deg1sub 25626 dchr2sum 26776 ogrpsub 32234 symgsubg 32248 cycpmconjv 32301 archiabllem2c 32341 linds2eq 32497 ressply1sub 32659 lflsub 37937 ldualvsubval 38027 lcdvsubval 40489 baerlem3lem1 40578 baerlem5alem1 40579 baerlem5amN 40587 baerlem5bmN 40588 baerlem5abmN 40589 hdmapsub 40718 nelsubgsubcld 41072 rngsubdi 46670 rngsubdir 46671 |
Copyright terms: Public domain | W3C validator |