| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpsubval | Structured version Visualization version GIF version | ||
| Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 13-Dec-2014.) |
| Ref | Expression |
|---|---|
| grpsubval.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpsubval.p | ⊢ + = (+g‘𝐺) |
| grpsubval.i | ⊢ 𝐼 = (invg‘𝐺) |
| grpsubval.m | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| grpsubval | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + (𝐼‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7397 | . 2 ⊢ (𝑥 = 𝑋 → (𝑥 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑦))) | |
| 2 | fveq2 6861 | . . 3 ⊢ (𝑦 = 𝑌 → (𝐼‘𝑦) = (𝐼‘𝑌)) | |
| 3 | 2 | oveq2d 7406 | . 2 ⊢ (𝑦 = 𝑌 → (𝑋 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑌))) |
| 4 | grpsubval.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | grpsubval.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 6 | grpsubval.i | . . 3 ⊢ 𝐼 = (invg‘𝐺) | |
| 7 | grpsubval.m | . . 3 ⊢ − = (-g‘𝐺) | |
| 8 | 4, 5, 6, 7 | grpsubfval 18922 | . 2 ⊢ − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦))) |
| 9 | ovex 7423 | . 2 ⊢ (𝑋 + (𝐼‘𝑌)) ∈ V | |
| 10 | 1, 3, 8, 9 | ovmpo 7552 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + (𝐼‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 invgcminusg 18873 -gcsg 18874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-sbg 18877 |
| This theorem is referenced by: grpsubinv 18951 grpsubrcan 18960 grpinvsub 18961 grpinvval2 18962 grpsubid 18963 grpsubid1 18964 grpsubeq0 18965 grpsubadd0sub 18966 grpsubadd 18967 grpsubsub 18968 grpaddsubass 18969 grpnpcan 18971 pwssub 18993 mulgsubdir 19053 subgsubcl 19076 subgsub 19077 issubg4 19084 qussub 19130 ghmsub 19163 sylow2blem1 19557 lsmelvalm 19588 ablsub2inv 19745 ablsub4 19747 ablsubsub4 19755 mulgsubdi 19766 eqgabl 19771 gsumsub 19885 dprdfsub 19960 rngsubdi 20087 rngsubdir 20088 abvsubtri 20743 lmodvsubval2 20830 lmodsubdir 20833 lspsntrim 21012 cnfldsub 21316 m2detleiblem7 22521 chpscmatgsumbin 22738 tgpconncomp 24007 tsmssub 24043 tsmsxplem1 24047 isngp4 24507 ngpsubcan 24509 ngptgp 24531 tngngp3 24551 clmpm1dir 25010 cphipval 25150 deg1suble 26019 deg1sub 26020 dchr2sum 27191 ogrpsub 33037 symgsubg 33051 cycpmconjv 33106 archiabllem2c 33156 linds2eq 33359 ressply1sub 33546 r1padd1 33580 ply1divalg3 35636 lflsub 39067 ldualvsubval 39157 lcdvsubval 41619 baerlem3lem1 41708 baerlem5alem1 41709 baerlem5amN 41717 baerlem5bmN 41718 baerlem5abmN 41719 hdmapsub 41848 nelsubgsubcld 42493 |
| Copyright terms: Public domain | W3C validator |