| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpinvval2 | Structured version Visualization version GIF version | ||
| Description: A df-neg 11467-like equation for inverse in terms of group subtraction. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| grpsubcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpsubcl.m | ⊢ − = (-g‘𝐺) |
| grpinvsub.n | ⊢ 𝑁 = (invg‘𝐺) |
| grpinvval2.z | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvval2 | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = ( 0 − 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grpinvval2.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 3 | 1, 2 | grpidcl 18946 | . . 3 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| 4 | eqid 2735 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 5 | grpinvsub.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
| 6 | grpsubcl.m | . . . 4 ⊢ − = (-g‘𝐺) | |
| 7 | 1, 4, 5, 6 | grpsubval 18966 | . . 3 ⊢ (( 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ( 0 − 𝑋) = ( 0 (+g‘𝐺)(𝑁‘𝑋))) |
| 8 | 3, 7 | sylan 580 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 − 𝑋) = ( 0 (+g‘𝐺)(𝑁‘𝑋))) |
| 9 | 1, 5 | grpinvcl 18968 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
| 10 | 1, 4, 2 | grplid 18948 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑁‘𝑋) ∈ 𝐵) → ( 0 (+g‘𝐺)(𝑁‘𝑋)) = (𝑁‘𝑋)) |
| 11 | 9, 10 | syldan 591 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 (+g‘𝐺)(𝑁‘𝑋)) = (𝑁‘𝑋)) |
| 12 | 8, 11 | eqtr2d 2771 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = ( 0 − 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 +gcplusg 17269 0gc0g 17451 Grpcgrp 18914 invgcminusg 18915 -gcsg 18916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 df-0g 17453 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-grp 18917 df-minusg 18918 df-sbg 18919 |
| This theorem is referenced by: grpsubadd0sub 19008 odm1inv 19532 matinvgcell 22371 istgp2 24027 nrmmetd 24511 nminv 24558 |
| Copyright terms: Public domain | W3C validator |