| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpinvval2 | Structured version Visualization version GIF version | ||
| Description: A df-neg 11414-like equation for inverse in terms of group subtraction. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| grpsubcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpsubcl.m | ⊢ − = (-g‘𝐺) |
| grpinvsub.n | ⊢ 𝑁 = (invg‘𝐺) |
| grpinvval2.z | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvval2 | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = ( 0 − 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grpinvval2.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 3 | 1, 2 | grpidcl 18903 | . . 3 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| 4 | eqid 2730 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 5 | grpinvsub.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
| 6 | grpsubcl.m | . . . 4 ⊢ − = (-g‘𝐺) | |
| 7 | 1, 4, 5, 6 | grpsubval 18923 | . . 3 ⊢ (( 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ( 0 − 𝑋) = ( 0 (+g‘𝐺)(𝑁‘𝑋))) |
| 8 | 3, 7 | sylan 580 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 − 𝑋) = ( 0 (+g‘𝐺)(𝑁‘𝑋))) |
| 9 | 1, 5 | grpinvcl 18925 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
| 10 | 1, 4, 2 | grplid 18905 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑁‘𝑋) ∈ 𝐵) → ( 0 (+g‘𝐺)(𝑁‘𝑋)) = (𝑁‘𝑋)) |
| 11 | 9, 10 | syldan 591 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 (+g‘𝐺)(𝑁‘𝑋)) = (𝑁‘𝑋)) |
| 12 | 8, 11 | eqtr2d 2766 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = ( 0 − 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 +gcplusg 17226 0gc0g 17408 Grpcgrp 18871 invgcminusg 18872 -gcsg 18873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-0g 17410 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18874 df-minusg 18875 df-sbg 18876 |
| This theorem is referenced by: grpsubadd0sub 18965 odm1inv 19489 matinvgcell 22328 istgp2 23984 nrmmetd 24468 nminv 24515 |
| Copyright terms: Public domain | W3C validator |