MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvval2 Structured version   Visualization version   GIF version

Theorem grpinvval2 18755
Description: A df-neg 11310-like equation for inverse in terms of group subtraction. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
grpsubcl.b 𝐵 = (Base‘𝐺)
grpsubcl.m = (-g𝐺)
grpinvsub.n 𝑁 = (invg𝐺)
grpinvval2.z 0 = (0g𝐺)
Assertion
Ref Expression
grpinvval2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) = ( 0 𝑋))

Proof of Theorem grpinvval2
StepHypRef Expression
1 grpsubcl.b . . . 4 𝐵 = (Base‘𝐺)
2 grpinvval2.z . . . 4 0 = (0g𝐺)
31, 2grpidcl 18704 . . 3 (𝐺 ∈ Grp → 0𝐵)
4 eqid 2736 . . . 4 (+g𝐺) = (+g𝐺)
5 grpinvsub.n . . . 4 𝑁 = (invg𝐺)
6 grpsubcl.m . . . 4 = (-g𝐺)
71, 4, 5, 6grpsubval 18722 . . 3 (( 0𝐵𝑋𝐵) → ( 0 𝑋) = ( 0 (+g𝐺)(𝑁𝑋)))
83, 7sylan 580 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ( 0 𝑋) = ( 0 (+g𝐺)(𝑁𝑋)))
91, 5grpinvcl 18724 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
101, 4, 2grplid 18706 . . 3 ((𝐺 ∈ Grp ∧ (𝑁𝑋) ∈ 𝐵) → ( 0 (+g𝐺)(𝑁𝑋)) = (𝑁𝑋))
119, 10syldan 591 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ( 0 (+g𝐺)(𝑁𝑋)) = (𝑁𝑋))
128, 11eqtr2d 2777 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) = ( 0 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  cfv 6480  (class class class)co 7338  Basecbs 17010  +gcplusg 17060  0gc0g 17248  Grpcgrp 18674  invgcminusg 18675  -gcsg 18676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-iun 4944  df-br 5094  df-opab 5156  df-mpt 5177  df-id 5519  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-fv 6488  df-riota 7294  df-ov 7341  df-oprab 7342  df-mpo 7343  df-1st 7900  df-2nd 7901  df-0g 17250  df-mgm 18424  df-sgrp 18473  df-mnd 18484  df-grp 18677  df-minusg 18678  df-sbg 18679
This theorem is referenced by:  grpsubadd0sub  18759  matinvgcell  21691  istgp2  23349  nrmmetd  23837  nminv  23884
  Copyright terms: Public domain W3C validator