MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvval2 Structured version   Visualization version   GIF version

Theorem grpinvval2 18835
Description: A df-neg 11393-like equation for inverse in terms of group subtraction. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
grpsubcl.b 𝐵 = (Base‘𝐺)
grpsubcl.m = (-g𝐺)
grpinvsub.n 𝑁 = (invg𝐺)
grpinvval2.z 0 = (0g𝐺)
Assertion
Ref Expression
grpinvval2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) = ( 0 𝑋))

Proof of Theorem grpinvval2
StepHypRef Expression
1 grpsubcl.b . . . 4 𝐵 = (Base‘𝐺)
2 grpinvval2.z . . . 4 0 = (0g𝐺)
31, 2grpidcl 18783 . . 3 (𝐺 ∈ Grp → 0𝐵)
4 eqid 2733 . . . 4 (+g𝐺) = (+g𝐺)
5 grpinvsub.n . . . 4 𝑁 = (invg𝐺)
6 grpsubcl.m . . . 4 = (-g𝐺)
71, 4, 5, 6grpsubval 18801 . . 3 (( 0𝐵𝑋𝐵) → ( 0 𝑋) = ( 0 (+g𝐺)(𝑁𝑋)))
83, 7sylan 581 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ( 0 𝑋) = ( 0 (+g𝐺)(𝑁𝑋)))
91, 5grpinvcl 18803 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
101, 4, 2grplid 18785 . . 3 ((𝐺 ∈ Grp ∧ (𝑁𝑋) ∈ 𝐵) → ( 0 (+g𝐺)(𝑁𝑋)) = (𝑁𝑋))
119, 10syldan 592 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ( 0 (+g𝐺)(𝑁𝑋)) = (𝑁𝑋))
128, 11eqtr2d 2774 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) = ( 0 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  cfv 6497  (class class class)co 7358  Basecbs 17088  +gcplusg 17138  0gc0g 17326  Grpcgrp 18753  invgcminusg 18754  -gcsg 18755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-1st 7922  df-2nd 7923  df-0g 17328  df-mgm 18502  df-sgrp 18551  df-mnd 18562  df-grp 18756  df-minusg 18757  df-sbg 18758
This theorem is referenced by:  grpsubadd0sub  18839  odm1inv  19340  matinvgcell  21800  istgp2  23458  nrmmetd  23946  nminv  23993
  Copyright terms: Public domain W3C validator