MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvval2 Structured version   Visualization version   GIF version

Theorem grpinvval2 17896
Description: A df-neg 10611-like equation for inverse in terms of group subtraction. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
grpsubcl.b 𝐵 = (Base‘𝐺)
grpsubcl.m = (-g𝐺)
grpinvsub.n 𝑁 = (invg𝐺)
grpinvval2.z 0 = (0g𝐺)
Assertion
Ref Expression
grpinvval2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) = ( 0 𝑋))

Proof of Theorem grpinvval2
StepHypRef Expression
1 grpsubcl.b . . . 4 𝐵 = (Base‘𝐺)
2 grpinvval2.z . . . 4 0 = (0g𝐺)
31, 2grpidcl 17848 . . 3 (𝐺 ∈ Grp → 0𝐵)
4 eqid 2778 . . . 4 (+g𝐺) = (+g𝐺)
5 grpinvsub.n . . . 4 𝑁 = (invg𝐺)
6 grpsubcl.m . . . 4 = (-g𝐺)
71, 4, 5, 6grpsubval 17863 . . 3 (( 0𝐵𝑋𝐵) → ( 0 𝑋) = ( 0 (+g𝐺)(𝑁𝑋)))
83, 7sylan 575 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ( 0 𝑋) = ( 0 (+g𝐺)(𝑁𝑋)))
91, 5grpinvcl 17865 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
101, 4, 2grplid 17850 . . 3 ((𝐺 ∈ Grp ∧ (𝑁𝑋) ∈ 𝐵) → ( 0 (+g𝐺)(𝑁𝑋)) = (𝑁𝑋))
119, 10syldan 585 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ( 0 (+g𝐺)(𝑁𝑋)) = (𝑁𝑋))
128, 11eqtr2d 2815 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) = ( 0 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  cfv 6137  (class class class)co 6924  Basecbs 16266  +gcplusg 16349  0gc0g 16497  Grpcgrp 17820  invgcminusg 17821  -gcsg 17822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-1st 7447  df-2nd 7448  df-0g 16499  df-mgm 17639  df-sgrp 17681  df-mnd 17692  df-grp 17823  df-minusg 17824  df-sbg 17825
This theorem is referenced by:  grpsubadd0sub  17900  matinvgcell  20656  istgp2  22314  nrmmetd  22798  nminv  22844
  Copyright terms: Public domain W3C validator