| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpinvval2 | Structured version Visualization version GIF version | ||
| Description: A df-neg 11368-like equation for inverse in terms of group subtraction. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| grpsubcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpsubcl.m | ⊢ − = (-g‘𝐺) |
| grpinvsub.n | ⊢ 𝑁 = (invg‘𝐺) |
| grpinvval2.z | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvval2 | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = ( 0 − 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grpinvval2.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 3 | 1, 2 | grpidcl 18862 | . . 3 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| 4 | eqid 2729 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 5 | grpinvsub.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
| 6 | grpsubcl.m | . . . 4 ⊢ − = (-g‘𝐺) | |
| 7 | 1, 4, 5, 6 | grpsubval 18882 | . . 3 ⊢ (( 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ( 0 − 𝑋) = ( 0 (+g‘𝐺)(𝑁‘𝑋))) |
| 8 | 3, 7 | sylan 580 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 − 𝑋) = ( 0 (+g‘𝐺)(𝑁‘𝑋))) |
| 9 | 1, 5 | grpinvcl 18884 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
| 10 | 1, 4, 2 | grplid 18864 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑁‘𝑋) ∈ 𝐵) → ( 0 (+g‘𝐺)(𝑁‘𝑋)) = (𝑁‘𝑋)) |
| 11 | 9, 10 | syldan 591 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 (+g‘𝐺)(𝑁‘𝑋)) = (𝑁‘𝑋)) |
| 12 | 8, 11 | eqtr2d 2765 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = ( 0 − 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 0gc0g 17361 Grpcgrp 18830 invgcminusg 18831 -gcsg 18832 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-sbg 18835 |
| This theorem is referenced by: grpsubadd0sub 18924 odm1inv 19450 matinvgcell 22338 istgp2 23994 nrmmetd 24478 nminv 24525 |
| Copyright terms: Public domain | W3C validator |