![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpsubeq0 | Structured version Visualization version GIF version |
Description: If the difference between two group elements is zero, they are equal. (subeq0 11493 analog.) (Contributed by NM, 31-Mar-2014.) |
Ref | Expression |
---|---|
grpsubid.b | ⊢ 𝐵 = (Base‘𝐺) |
grpsubid.o | ⊢ 0 = (0g‘𝐺) |
grpsubid.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
grpsubeq0 | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 − 𝑌) = 0 ↔ 𝑋 = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsubid.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2731 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | eqid 2731 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
4 | grpsubid.m | . . . . 5 ⊢ − = (-g‘𝐺) | |
5 | 1, 2, 3, 4 | grpsubval 18913 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
6 | 5 | 3adant1 1129 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
7 | 6 | eqeq1d 2733 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 − 𝑌) = 0 ↔ (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌)) = 0 )) |
8 | simp1 1135 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐺 ∈ Grp) | |
9 | 1, 3 | grpinvcl 18915 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) ∈ 𝐵) |
10 | 9 | 3adant2 1130 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) ∈ 𝐵) |
11 | simp2 1136 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
12 | grpsubid.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
13 | 1, 2, 12, 3 | grpinvid2 18920 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ ((invg‘𝐺)‘𝑌) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (((invg‘𝐺)‘((invg‘𝐺)‘𝑌)) = 𝑋 ↔ (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌)) = 0 )) |
14 | 8, 10, 11, 13 | syl3anc 1370 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((invg‘𝐺)‘((invg‘𝐺)‘𝑌)) = 𝑋 ↔ (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌)) = 0 )) |
15 | 1, 3 | grpinvinv 18933 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘((invg‘𝐺)‘𝑌)) = 𝑌) |
16 | 15 | 3adant2 1130 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘((invg‘𝐺)‘𝑌)) = 𝑌) |
17 | 16 | eqeq1d 2733 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((invg‘𝐺)‘((invg‘𝐺)‘𝑌)) = 𝑋 ↔ 𝑌 = 𝑋)) |
18 | eqcom 2738 | . . 3 ⊢ (𝑌 = 𝑋 ↔ 𝑋 = 𝑌) | |
19 | 17, 18 | bitrdi 287 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((invg‘𝐺)‘((invg‘𝐺)‘𝑌)) = 𝑋 ↔ 𝑋 = 𝑌)) |
20 | 7, 14, 19 | 3bitr2d 307 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 − 𝑌) = 0 ↔ 𝑋 = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ‘cfv 6543 (class class class)co 7412 Basecbs 17151 +gcplusg 17204 0gc0g 17392 Grpcgrp 18861 invgcminusg 18862 -gcsg 18863 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-0g 17394 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-grp 18864 df-minusg 18865 df-sbg 18866 |
This theorem is referenced by: ghmeqker 19164 ghmf1 19167 kerf1ghm 19168 odcong 19465 subgdisj1 19607 dprdf11 19941 lmodsubeq0 20763 lvecvscan2 20959 isdomn4 21208 ip2eq 21517 mdetuni0 22444 tgphaus 23942 nrmmetd 24404 ply1divmo 25992 dvdsq1p 26017 dvdsr1p 26018 ply1remlem 26019 ig1peu 26028 dchr2sum 27121 fermltlchr 32920 znfermltl 32921 linds2eq 32939 eqlkr 38436 hdmap11 41186 hdmapinvlem4 41259 idomrootle 42403 lidldomn1 47071 |
Copyright terms: Public domain | W3C validator |