| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpsubeq0 | Structured version Visualization version GIF version | ||
| Description: If the difference between two group elements is zero, they are equal. (subeq0 11514 analog.) (Contributed by NM, 31-Mar-2014.) |
| Ref | Expression |
|---|---|
| grpsubid.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpsubid.o | ⊢ 0 = (0g‘𝐺) |
| grpsubid.m | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| grpsubeq0 | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 − 𝑌) = 0 ↔ 𝑋 = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubid.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2736 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | eqid 2736 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 4 | grpsubid.m | . . . . 5 ⊢ − = (-g‘𝐺) | |
| 5 | 1, 2, 3, 4 | grpsubval 18973 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
| 6 | 5 | 3adant1 1130 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
| 7 | 6 | eqeq1d 2738 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 − 𝑌) = 0 ↔ (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌)) = 0 )) |
| 8 | simp1 1136 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐺 ∈ Grp) | |
| 9 | 1, 3 | grpinvcl 18975 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) ∈ 𝐵) |
| 10 | 9 | 3adant2 1131 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) ∈ 𝐵) |
| 11 | simp2 1137 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 12 | grpsubid.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 13 | 1, 2, 12, 3 | grpinvid2 18980 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ ((invg‘𝐺)‘𝑌) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (((invg‘𝐺)‘((invg‘𝐺)‘𝑌)) = 𝑋 ↔ (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌)) = 0 )) |
| 14 | 8, 10, 11, 13 | syl3anc 1373 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((invg‘𝐺)‘((invg‘𝐺)‘𝑌)) = 𝑋 ↔ (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌)) = 0 )) |
| 15 | 1, 3 | grpinvinv 18993 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘((invg‘𝐺)‘𝑌)) = 𝑌) |
| 16 | 15 | 3adant2 1131 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘((invg‘𝐺)‘𝑌)) = 𝑌) |
| 17 | 16 | eqeq1d 2738 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((invg‘𝐺)‘((invg‘𝐺)‘𝑌)) = 𝑋 ↔ 𝑌 = 𝑋)) |
| 18 | eqcom 2743 | . . 3 ⊢ (𝑌 = 𝑋 ↔ 𝑋 = 𝑌) | |
| 19 | 17, 18 | bitrdi 287 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((invg‘𝐺)‘((invg‘𝐺)‘𝑌)) = 𝑋 ↔ 𝑋 = 𝑌)) |
| 20 | 7, 14, 19 | 3bitr2d 307 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 − 𝑌) = 0 ↔ 𝑋 = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 0gc0g 17458 Grpcgrp 18921 invgcminusg 18922 -gcsg 18923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-sbg 18926 |
| This theorem is referenced by: ghmeqker 19231 ghmf1 19234 kerf1ghm 19235 odcong 19535 subgdisj1 19677 dprdf11 20011 isdomn4 20681 lmodsubeq0 20883 lvecvscan2 21078 fermltlchr 21495 ip2eq 21618 mdetuni0 22564 tgphaus 24060 nrmmetd 24518 ply1divmo 26098 dvdsq1p 26125 dvdsr1p 26126 ply1remlem 26127 idomrootle 26135 ig1peu 26137 dchr2sum 27241 rlocf1 33273 fracerl 33305 znfermltl 33386 linds2eq 33401 assalactf1o 33680 eqlkr 39122 hdmap11 41872 hdmapinvlem4 41945 aks6d1c6lem2 42189 aks6d1c6lem3 42190 lidldomn1 48173 |
| Copyright terms: Public domain | W3C validator |