MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumcllem Structured version   Visualization version   GIF version

Theorem gsumcllem 19838
Description: Lemma for gsumcl 19845 and related theorems. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 31-May-2019.)
Hypotheses
Ref Expression
gsumcllem.f (𝜑𝐹:𝐴𝐵)
gsumcllem.a (𝜑𝐴𝑉)
gsumcllem.z (𝜑𝑍𝑈)
gsumcllem.s (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
Assertion
Ref Expression
gsumcllem ((𝜑𝑊 = ∅) → 𝐹 = (𝑘𝐴𝑍))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑊
Allowed substitution hints:   𝐵(𝑘)   𝑈(𝑘)   𝑉(𝑘)   𝑍(𝑘)

Proof of Theorem gsumcllem
StepHypRef Expression
1 gsumcllem.f . . . 4 (𝜑𝐹:𝐴𝐵)
21feqmptd 6929 . . 3 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
32adantr 480 . 2 ((𝜑𝑊 = ∅) → 𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
4 difeq2 4083 . . . . . . . 8 (𝑊 = ∅ → (𝐴𝑊) = (𝐴 ∖ ∅))
5 dif0 4341 . . . . . . . 8 (𝐴 ∖ ∅) = 𝐴
64, 5eqtrdi 2780 . . . . . . 7 (𝑊 = ∅ → (𝐴𝑊) = 𝐴)
76eleq2d 2814 . . . . . 6 (𝑊 = ∅ → (𝑘 ∈ (𝐴𝑊) ↔ 𝑘𝐴))
87biimpar 477 . . . . 5 ((𝑊 = ∅ ∧ 𝑘𝐴) → 𝑘 ∈ (𝐴𝑊))
9 gsumcllem.s . . . . . 6 (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
10 gsumcllem.a . . . . . 6 (𝜑𝐴𝑉)
11 gsumcllem.z . . . . . 6 (𝜑𝑍𝑈)
121, 9, 10, 11suppssr 8174 . . . . 5 ((𝜑𝑘 ∈ (𝐴𝑊)) → (𝐹𝑘) = 𝑍)
138, 12sylan2 593 . . . 4 ((𝜑 ∧ (𝑊 = ∅ ∧ 𝑘𝐴)) → (𝐹𝑘) = 𝑍)
1413anassrs 467 . . 3 (((𝜑𝑊 = ∅) ∧ 𝑘𝐴) → (𝐹𝑘) = 𝑍)
1514mpteq2dva 5200 . 2 ((𝜑𝑊 = ∅) → (𝑘𝐴 ↦ (𝐹𝑘)) = (𝑘𝐴𝑍))
163, 15eqtrd 2764 1 ((𝜑𝑊 = ∅) → 𝐹 = (𝑘𝐴𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cdif 3911  wss 3914  c0 4296  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387   supp csupp 8139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-supp 8140
This theorem is referenced by:  gsumzres  19839  gsumzcl2  19840  gsumzf1o  19842  gsumzaddlem  19851  gsumzmhm  19867  gsumzoppg  19874
  Copyright terms: Public domain W3C validator