Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsumcllem | Structured version Visualization version GIF version |
Description: Lemma for gsumcl 19431 and related theorems. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 31-May-2019.) |
Ref | Expression |
---|---|
gsumcllem.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
gsumcllem.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsumcllem.z | ⊢ (𝜑 → 𝑍 ∈ 𝑈) |
gsumcllem.s | ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) |
Ref | Expression |
---|---|
gsumcllem | ⊢ ((𝜑 ∧ 𝑊 = ∅) → 𝐹 = (𝑘 ∈ 𝐴 ↦ 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumcllem.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | feqmptd 6819 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑊 = ∅) → 𝐹 = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
4 | difeq2 4047 | . . . . . . . 8 ⊢ (𝑊 = ∅ → (𝐴 ∖ 𝑊) = (𝐴 ∖ ∅)) | |
5 | dif0 4303 | . . . . . . . 8 ⊢ (𝐴 ∖ ∅) = 𝐴 | |
6 | 4, 5 | eqtrdi 2795 | . . . . . . 7 ⊢ (𝑊 = ∅ → (𝐴 ∖ 𝑊) = 𝐴) |
7 | 6 | eleq2d 2824 | . . . . . 6 ⊢ (𝑊 = ∅ → (𝑘 ∈ (𝐴 ∖ 𝑊) ↔ 𝑘 ∈ 𝐴)) |
8 | 7 | biimpar 477 | . . . . 5 ⊢ ((𝑊 = ∅ ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ (𝐴 ∖ 𝑊)) |
9 | gsumcllem.s | . . . . . 6 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) | |
10 | gsumcllem.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
11 | gsumcllem.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑈) | |
12 | 1, 9, 10, 11 | suppssr 7983 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑘) = 𝑍) |
13 | 8, 12 | sylan2 592 | . . . 4 ⊢ ((𝜑 ∧ (𝑊 = ∅ ∧ 𝑘 ∈ 𝐴)) → (𝐹‘𝑘) = 𝑍) |
14 | 13 | anassrs 467 | . . 3 ⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) = 𝑍) |
15 | 14 | mpteq2dva 5170 | . 2 ⊢ ((𝜑 ∧ 𝑊 = ∅) → (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) = (𝑘 ∈ 𝐴 ↦ 𝑍)) |
16 | 3, 15 | eqtrd 2778 | 1 ⊢ ((𝜑 ∧ 𝑊 = ∅) → 𝐹 = (𝑘 ∈ 𝐴 ↦ 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ⊆ wss 3883 ∅c0 4253 ↦ cmpt 5153 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 supp csupp 7948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-supp 7949 |
This theorem is referenced by: gsumzres 19425 gsumzcl2 19426 gsumzf1o 19428 gsumzaddlem 19437 gsumzmhm 19453 gsumzoppg 19460 |
Copyright terms: Public domain | W3C validator |