Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsumcllem | Structured version Visualization version GIF version |
Description: Lemma for gsumcl 19516 and related theorems. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 31-May-2019.) |
Ref | Expression |
---|---|
gsumcllem.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
gsumcllem.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsumcllem.z | ⊢ (𝜑 → 𝑍 ∈ 𝑈) |
gsumcllem.s | ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) |
Ref | Expression |
---|---|
gsumcllem | ⊢ ((𝜑 ∧ 𝑊 = ∅) → 𝐹 = (𝑘 ∈ 𝐴 ↦ 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumcllem.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | feqmptd 6837 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
3 | 2 | adantr 481 | . 2 ⊢ ((𝜑 ∧ 𝑊 = ∅) → 𝐹 = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
4 | difeq2 4051 | . . . . . . . 8 ⊢ (𝑊 = ∅ → (𝐴 ∖ 𝑊) = (𝐴 ∖ ∅)) | |
5 | dif0 4306 | . . . . . . . 8 ⊢ (𝐴 ∖ ∅) = 𝐴 | |
6 | 4, 5 | eqtrdi 2794 | . . . . . . 7 ⊢ (𝑊 = ∅ → (𝐴 ∖ 𝑊) = 𝐴) |
7 | 6 | eleq2d 2824 | . . . . . 6 ⊢ (𝑊 = ∅ → (𝑘 ∈ (𝐴 ∖ 𝑊) ↔ 𝑘 ∈ 𝐴)) |
8 | 7 | biimpar 478 | . . . . 5 ⊢ ((𝑊 = ∅ ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ (𝐴 ∖ 𝑊)) |
9 | gsumcllem.s | . . . . . 6 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) | |
10 | gsumcllem.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
11 | gsumcllem.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑈) | |
12 | 1, 9, 10, 11 | suppssr 8012 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑘) = 𝑍) |
13 | 8, 12 | sylan2 593 | . . . 4 ⊢ ((𝜑 ∧ (𝑊 = ∅ ∧ 𝑘 ∈ 𝐴)) → (𝐹‘𝑘) = 𝑍) |
14 | 13 | anassrs 468 | . . 3 ⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) = 𝑍) |
15 | 14 | mpteq2dva 5174 | . 2 ⊢ ((𝜑 ∧ 𝑊 = ∅) → (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) = (𝑘 ∈ 𝐴 ↦ 𝑍)) |
16 | 3, 15 | eqtrd 2778 | 1 ⊢ ((𝜑 ∧ 𝑊 = ∅) → 𝐹 = (𝑘 ∈ 𝐴 ↦ 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 ⊆ wss 3887 ∅c0 4256 ↦ cmpt 5157 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 supp csupp 7977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-supp 7978 |
This theorem is referenced by: gsumzres 19510 gsumzcl2 19511 gsumzf1o 19513 gsumzaddlem 19522 gsumzmhm 19538 gsumzoppg 19545 |
Copyright terms: Public domain | W3C validator |