MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumcllem Structured version   Visualization version   GIF version

Theorem gsumcllem 19605
Description: Lemma for gsumcl 19612 and related theorems. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 31-May-2019.)
Hypotheses
Ref Expression
gsumcllem.f (𝜑𝐹:𝐴𝐵)
gsumcllem.a (𝜑𝐴𝑉)
gsumcllem.z (𝜑𝑍𝑈)
gsumcllem.s (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
Assertion
Ref Expression
gsumcllem ((𝜑𝑊 = ∅) → 𝐹 = (𝑘𝐴𝑍))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑊
Allowed substitution hints:   𝐵(𝑘)   𝑈(𝑘)   𝑉(𝑘)   𝑍(𝑘)

Proof of Theorem gsumcllem
StepHypRef Expression
1 gsumcllem.f . . . 4 (𝜑𝐹:𝐴𝐵)
21feqmptd 6894 . . 3 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
32adantr 481 . 2 ((𝜑𝑊 = ∅) → 𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
4 difeq2 4064 . . . . . . . 8 (𝑊 = ∅ → (𝐴𝑊) = (𝐴 ∖ ∅))
5 dif0 4320 . . . . . . . 8 (𝐴 ∖ ∅) = 𝐴
64, 5eqtrdi 2792 . . . . . . 7 (𝑊 = ∅ → (𝐴𝑊) = 𝐴)
76eleq2d 2822 . . . . . 6 (𝑊 = ∅ → (𝑘 ∈ (𝐴𝑊) ↔ 𝑘𝐴))
87biimpar 478 . . . . 5 ((𝑊 = ∅ ∧ 𝑘𝐴) → 𝑘 ∈ (𝐴𝑊))
9 gsumcllem.s . . . . . 6 (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
10 gsumcllem.a . . . . . 6 (𝜑𝐴𝑉)
11 gsumcllem.z . . . . . 6 (𝜑𝑍𝑈)
121, 9, 10, 11suppssr 8083 . . . . 5 ((𝜑𝑘 ∈ (𝐴𝑊)) → (𝐹𝑘) = 𝑍)
138, 12sylan2 593 . . . 4 ((𝜑 ∧ (𝑊 = ∅ ∧ 𝑘𝐴)) → (𝐹𝑘) = 𝑍)
1413anassrs 468 . . 3 (((𝜑𝑊 = ∅) ∧ 𝑘𝐴) → (𝐹𝑘) = 𝑍)
1514mpteq2dva 5193 . 2 ((𝜑𝑊 = ∅) → (𝑘𝐴 ↦ (𝐹𝑘)) = (𝑘𝐴𝑍))
163, 15eqtrd 2776 1 ((𝜑𝑊 = ∅) → 𝐹 = (𝑘𝐴𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  cdif 3895  wss 3898  c0 4270  cmpt 5176  wf 6476  cfv 6480  (class class class)co 7338   supp csupp 8048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5230  ax-sep 5244  ax-nul 5251  ax-pr 5373  ax-un 7651
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-iun 4944  df-br 5094  df-opab 5156  df-mpt 5177  df-id 5519  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488  df-ov 7341  df-oprab 7342  df-mpo 7343  df-supp 8049
This theorem is referenced by:  gsumzres  19606  gsumzcl2  19607  gsumzf1o  19609  gsumzaddlem  19618  gsumzmhm  19634  gsumzoppg  19641
  Copyright terms: Public domain W3C validator