MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumcllem Structured version   Visualization version   GIF version

Theorem gsumcllem 19926
Description: Lemma for gsumcl 19933 and related theorems. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 31-May-2019.)
Hypotheses
Ref Expression
gsumcllem.f (𝜑𝐹:𝐴𝐵)
gsumcllem.a (𝜑𝐴𝑉)
gsumcllem.z (𝜑𝑍𝑈)
gsumcllem.s (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
Assertion
Ref Expression
gsumcllem ((𝜑𝑊 = ∅) → 𝐹 = (𝑘𝐴𝑍))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑊
Allowed substitution hints:   𝐵(𝑘)   𝑈(𝑘)   𝑉(𝑘)   𝑍(𝑘)

Proof of Theorem gsumcllem
StepHypRef Expression
1 gsumcllem.f . . . 4 (𝜑𝐹:𝐴𝐵)
21feqmptd 6977 . . 3 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
32adantr 480 . 2 ((𝜑𝑊 = ∅) → 𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
4 difeq2 4120 . . . . . . . 8 (𝑊 = ∅ → (𝐴𝑊) = (𝐴 ∖ ∅))
5 dif0 4378 . . . . . . . 8 (𝐴 ∖ ∅) = 𝐴
64, 5eqtrdi 2793 . . . . . . 7 (𝑊 = ∅ → (𝐴𝑊) = 𝐴)
76eleq2d 2827 . . . . . 6 (𝑊 = ∅ → (𝑘 ∈ (𝐴𝑊) ↔ 𝑘𝐴))
87biimpar 477 . . . . 5 ((𝑊 = ∅ ∧ 𝑘𝐴) → 𝑘 ∈ (𝐴𝑊))
9 gsumcllem.s . . . . . 6 (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
10 gsumcllem.a . . . . . 6 (𝜑𝐴𝑉)
11 gsumcllem.z . . . . . 6 (𝜑𝑍𝑈)
121, 9, 10, 11suppssr 8220 . . . . 5 ((𝜑𝑘 ∈ (𝐴𝑊)) → (𝐹𝑘) = 𝑍)
138, 12sylan2 593 . . . 4 ((𝜑 ∧ (𝑊 = ∅ ∧ 𝑘𝐴)) → (𝐹𝑘) = 𝑍)
1413anassrs 467 . . 3 (((𝜑𝑊 = ∅) ∧ 𝑘𝐴) → (𝐹𝑘) = 𝑍)
1514mpteq2dva 5242 . 2 ((𝜑𝑊 = ∅) → (𝑘𝐴 ↦ (𝐹𝑘)) = (𝑘𝐴𝑍))
163, 15eqtrd 2777 1 ((𝜑𝑊 = ∅) → 𝐹 = (𝑘𝐴𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cdif 3948  wss 3951  c0 4333  cmpt 5225  wf 6557  cfv 6561  (class class class)co 7431   supp csupp 8185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-supp 8186
This theorem is referenced by:  gsumzres  19927  gsumzcl2  19928  gsumzf1o  19930  gsumzaddlem  19939  gsumzmhm  19955  gsumzoppg  19962
  Copyright terms: Public domain W3C validator