| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumcllem | Structured version Visualization version GIF version | ||
| Description: Lemma for gsumcl 19835 and related theorems. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 31-May-2019.) |
| Ref | Expression |
|---|---|
| gsumcllem.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| gsumcllem.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| gsumcllem.z | ⊢ (𝜑 → 𝑍 ∈ 𝑈) |
| gsumcllem.s | ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) |
| Ref | Expression |
|---|---|
| gsumcllem | ⊢ ((𝜑 ∧ 𝑊 = ∅) → 𝐹 = (𝑘 ∈ 𝐴 ↦ 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumcllem.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | feqmptd 6899 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑊 = ∅) → 𝐹 = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
| 4 | difeq2 4069 | . . . . . . . 8 ⊢ (𝑊 = ∅ → (𝐴 ∖ 𝑊) = (𝐴 ∖ ∅)) | |
| 5 | dif0 4327 | . . . . . . . 8 ⊢ (𝐴 ∖ ∅) = 𝐴 | |
| 6 | 4, 5 | eqtrdi 2784 | . . . . . . 7 ⊢ (𝑊 = ∅ → (𝐴 ∖ 𝑊) = 𝐴) |
| 7 | 6 | eleq2d 2819 | . . . . . 6 ⊢ (𝑊 = ∅ → (𝑘 ∈ (𝐴 ∖ 𝑊) ↔ 𝑘 ∈ 𝐴)) |
| 8 | 7 | biimpar 477 | . . . . 5 ⊢ ((𝑊 = ∅ ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ (𝐴 ∖ 𝑊)) |
| 9 | gsumcllem.s | . . . . . 6 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) | |
| 10 | gsumcllem.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 11 | gsumcllem.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑈) | |
| 12 | 1, 9, 10, 11 | suppssr 8134 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑘) = 𝑍) |
| 13 | 8, 12 | sylan2 593 | . . . 4 ⊢ ((𝜑 ∧ (𝑊 = ∅ ∧ 𝑘 ∈ 𝐴)) → (𝐹‘𝑘) = 𝑍) |
| 14 | 13 | anassrs 467 | . . 3 ⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) = 𝑍) |
| 15 | 14 | mpteq2dva 5188 | . 2 ⊢ ((𝜑 ∧ 𝑊 = ∅) → (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) = (𝑘 ∈ 𝐴 ↦ 𝑍)) |
| 16 | 3, 15 | eqtrd 2768 | 1 ⊢ ((𝜑 ∧ 𝑊 = ∅) → 𝐹 = (𝑘 ∈ 𝐴 ↦ 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∖ cdif 3895 ⊆ wss 3898 ∅c0 4282 ↦ cmpt 5176 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 supp csupp 8099 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-supp 8100 |
| This theorem is referenced by: gsumzres 19829 gsumzcl2 19830 gsumzf1o 19832 gsumzaddlem 19841 gsumzmhm 19857 gsumzoppg 19864 |
| Copyright terms: Public domain | W3C validator |