MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumcllem Structured version   Visualization version   GIF version

Theorem gsumcllem 19889
Description: Lemma for gsumcl 19896 and related theorems. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 31-May-2019.)
Hypotheses
Ref Expression
gsumcllem.f (𝜑𝐹:𝐴𝐵)
gsumcllem.a (𝜑𝐴𝑉)
gsumcllem.z (𝜑𝑍𝑈)
gsumcllem.s (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
Assertion
Ref Expression
gsumcllem ((𝜑𝑊 = ∅) → 𝐹 = (𝑘𝐴𝑍))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑊
Allowed substitution hints:   𝐵(𝑘)   𝑈(𝑘)   𝑉(𝑘)   𝑍(𝑘)

Proof of Theorem gsumcllem
StepHypRef Expression
1 gsumcllem.f . . . 4 (𝜑𝐹:𝐴𝐵)
21feqmptd 6947 . . 3 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
32adantr 480 . 2 ((𝜑𝑊 = ∅) → 𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
4 difeq2 4095 . . . . . . . 8 (𝑊 = ∅ → (𝐴𝑊) = (𝐴 ∖ ∅))
5 dif0 4353 . . . . . . . 8 (𝐴 ∖ ∅) = 𝐴
64, 5eqtrdi 2786 . . . . . . 7 (𝑊 = ∅ → (𝐴𝑊) = 𝐴)
76eleq2d 2820 . . . . . 6 (𝑊 = ∅ → (𝑘 ∈ (𝐴𝑊) ↔ 𝑘𝐴))
87biimpar 477 . . . . 5 ((𝑊 = ∅ ∧ 𝑘𝐴) → 𝑘 ∈ (𝐴𝑊))
9 gsumcllem.s . . . . . 6 (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
10 gsumcllem.a . . . . . 6 (𝜑𝐴𝑉)
11 gsumcllem.z . . . . . 6 (𝜑𝑍𝑈)
121, 9, 10, 11suppssr 8194 . . . . 5 ((𝜑𝑘 ∈ (𝐴𝑊)) → (𝐹𝑘) = 𝑍)
138, 12sylan2 593 . . . 4 ((𝜑 ∧ (𝑊 = ∅ ∧ 𝑘𝐴)) → (𝐹𝑘) = 𝑍)
1413anassrs 467 . . 3 (((𝜑𝑊 = ∅) ∧ 𝑘𝐴) → (𝐹𝑘) = 𝑍)
1514mpteq2dva 5214 . 2 ((𝜑𝑊 = ∅) → (𝑘𝐴 ↦ (𝐹𝑘)) = (𝑘𝐴𝑍))
163, 15eqtrd 2770 1 ((𝜑𝑊 = ∅) → 𝐹 = (𝑘𝐴𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cdif 3923  wss 3926  c0 4308  cmpt 5201  wf 6527  cfv 6531  (class class class)co 7405   supp csupp 8159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-supp 8160
This theorem is referenced by:  gsumzres  19890  gsumzcl2  19891  gsumzf1o  19893  gsumzaddlem  19902  gsumzmhm  19918  gsumzoppg  19925
  Copyright terms: Public domain W3C validator