Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsumcllem | Structured version Visualization version GIF version |
Description: Lemma for gsumcl 19612 and related theorems. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 31-May-2019.) |
Ref | Expression |
---|---|
gsumcllem.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
gsumcllem.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsumcllem.z | ⊢ (𝜑 → 𝑍 ∈ 𝑈) |
gsumcllem.s | ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) |
Ref | Expression |
---|---|
gsumcllem | ⊢ ((𝜑 ∧ 𝑊 = ∅) → 𝐹 = (𝑘 ∈ 𝐴 ↦ 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumcllem.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | feqmptd 6894 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
3 | 2 | adantr 481 | . 2 ⊢ ((𝜑 ∧ 𝑊 = ∅) → 𝐹 = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
4 | difeq2 4064 | . . . . . . . 8 ⊢ (𝑊 = ∅ → (𝐴 ∖ 𝑊) = (𝐴 ∖ ∅)) | |
5 | dif0 4320 | . . . . . . . 8 ⊢ (𝐴 ∖ ∅) = 𝐴 | |
6 | 4, 5 | eqtrdi 2792 | . . . . . . 7 ⊢ (𝑊 = ∅ → (𝐴 ∖ 𝑊) = 𝐴) |
7 | 6 | eleq2d 2822 | . . . . . 6 ⊢ (𝑊 = ∅ → (𝑘 ∈ (𝐴 ∖ 𝑊) ↔ 𝑘 ∈ 𝐴)) |
8 | 7 | biimpar 478 | . . . . 5 ⊢ ((𝑊 = ∅ ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ (𝐴 ∖ 𝑊)) |
9 | gsumcllem.s | . . . . . 6 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) | |
10 | gsumcllem.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
11 | gsumcllem.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑈) | |
12 | 1, 9, 10, 11 | suppssr 8083 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑘) = 𝑍) |
13 | 8, 12 | sylan2 593 | . . . 4 ⊢ ((𝜑 ∧ (𝑊 = ∅ ∧ 𝑘 ∈ 𝐴)) → (𝐹‘𝑘) = 𝑍) |
14 | 13 | anassrs 468 | . . 3 ⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) = 𝑍) |
15 | 14 | mpteq2dva 5193 | . 2 ⊢ ((𝜑 ∧ 𝑊 = ∅) → (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) = (𝑘 ∈ 𝐴 ↦ 𝑍)) |
16 | 3, 15 | eqtrd 2776 | 1 ⊢ ((𝜑 ∧ 𝑊 = ∅) → 𝐹 = (𝑘 ∈ 𝐴 ↦ 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∖ cdif 3895 ⊆ wss 3898 ∅c0 4270 ↦ cmpt 5176 ⟶wf 6476 ‘cfv 6480 (class class class)co 7338 supp csupp 8048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pr 5373 ax-un 7651 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-id 5519 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-ov 7341 df-oprab 7342 df-mpo 7343 df-supp 8049 |
This theorem is referenced by: gsumzres 19606 gsumzcl2 19607 gsumzf1o 19609 gsumzaddlem 19618 gsumzmhm 19634 gsumzoppg 19641 |
Copyright terms: Public domain | W3C validator |