| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumcllem | Structured version Visualization version GIF version | ||
| Description: Lemma for gsumcl 19845 and related theorems. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 31-May-2019.) |
| Ref | Expression |
|---|---|
| gsumcllem.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| gsumcllem.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| gsumcllem.z | ⊢ (𝜑 → 𝑍 ∈ 𝑈) |
| gsumcllem.s | ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) |
| Ref | Expression |
|---|---|
| gsumcllem | ⊢ ((𝜑 ∧ 𝑊 = ∅) → 𝐹 = (𝑘 ∈ 𝐴 ↦ 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumcllem.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | feqmptd 6929 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑊 = ∅) → 𝐹 = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
| 4 | difeq2 4083 | . . . . . . . 8 ⊢ (𝑊 = ∅ → (𝐴 ∖ 𝑊) = (𝐴 ∖ ∅)) | |
| 5 | dif0 4341 | . . . . . . . 8 ⊢ (𝐴 ∖ ∅) = 𝐴 | |
| 6 | 4, 5 | eqtrdi 2780 | . . . . . . 7 ⊢ (𝑊 = ∅ → (𝐴 ∖ 𝑊) = 𝐴) |
| 7 | 6 | eleq2d 2814 | . . . . . 6 ⊢ (𝑊 = ∅ → (𝑘 ∈ (𝐴 ∖ 𝑊) ↔ 𝑘 ∈ 𝐴)) |
| 8 | 7 | biimpar 477 | . . . . 5 ⊢ ((𝑊 = ∅ ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ (𝐴 ∖ 𝑊)) |
| 9 | gsumcllem.s | . . . . . 6 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) | |
| 10 | gsumcllem.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 11 | gsumcllem.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑈) | |
| 12 | 1, 9, 10, 11 | suppssr 8174 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑘) = 𝑍) |
| 13 | 8, 12 | sylan2 593 | . . . 4 ⊢ ((𝜑 ∧ (𝑊 = ∅ ∧ 𝑘 ∈ 𝐴)) → (𝐹‘𝑘) = 𝑍) |
| 14 | 13 | anassrs 467 | . . 3 ⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) = 𝑍) |
| 15 | 14 | mpteq2dva 5200 | . 2 ⊢ ((𝜑 ∧ 𝑊 = ∅) → (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) = (𝑘 ∈ 𝐴 ↦ 𝑍)) |
| 16 | 3, 15 | eqtrd 2764 | 1 ⊢ ((𝜑 ∧ 𝑊 = ∅) → 𝐹 = (𝑘 ∈ 𝐴 ↦ 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3911 ⊆ wss 3914 ∅c0 4296 ↦ cmpt 5188 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 supp csupp 8139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-supp 8140 |
| This theorem is referenced by: gsumzres 19839 gsumzcl2 19840 gsumzf1o 19842 gsumzaddlem 19851 gsumzmhm 19867 gsumzoppg 19874 |
| Copyright terms: Public domain | W3C validator |