MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumcl Structured version   Visualization version   GIF version

Theorem gsumcl 19783
Description: Closure of a finite group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.)
Hypotheses
Ref Expression
gsumcl.b 𝐵 = (Base‘𝐺)
gsumcl.z 0 = (0g𝐺)
gsumcl.g (𝜑𝐺 ∈ CMnd)
gsumcl.a (𝜑𝐴𝑉)
gsumcl.f (𝜑𝐹:𝐴𝐵)
gsumcl.w (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsumcl (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵)

Proof of Theorem gsumcl
StepHypRef Expression
1 gsumcl.b . 2 𝐵 = (Base‘𝐺)
2 gsumcl.z . 2 0 = (0g𝐺)
3 gsumcl.g . 2 (𝜑𝐺 ∈ CMnd)
4 gsumcl.a . 2 (𝜑𝐴𝑉)
5 gsumcl.f . 2 (𝜑𝐹:𝐴𝐵)
6 gsumcl.w . . 3 (𝜑𝐹 finSupp 0 )
76fsuppimpd 9369 . 2 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
81, 2, 3, 4, 5, 7gsumcl2 19782 1 (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107   class class class wbr 5149  wf 6540  cfv 6544  (class class class)co 7409   finSupp cfsupp 9361  Basecbs 17144  0gc0g 17385   Σg cgsu 17386  CMndccmn 19648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-supp 8147  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-fsupp 9362  df-oi 9505  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-fzo 13628  df-seq 13967  df-hash 14291  df-0g 17387  df-gsum 17388  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-cntz 19181  df-cmn 19650
This theorem is referenced by:  gsummhm2  19807  gsumsub  19816  gsummptcl  19835  prdsgsum  19849  gsumdixp  20131  frlmphl  21336  frlmup1  21353  islindf4  21393  psrass1lemOLD  21493  psrass1lem  21496  psrmulcllem  21506  psrbagev2  21640  psrbagev2OLD  21641  evlslem3  21643  evlslem1  21645  gsumsmonply1  21827  pmatcollpw1  22278  pm2mpcl  22299  mply1topmatcl  22307  mp2pm2mplem2  22309  mp2pm2mp  22313  pm2mpmhmlem2  22321  cayhamlem4  22390  tsmslem1  23633  tsmsgsum  23643  tsmsid  23644  tsmssubm  23647  tsmsxplem1  23657  tsmsxplem2  23658  imasdsf1olem  23879  xrge0gsumle  24349  xrge0tsms  24350  amgm  26495  lgseisenlem3  26880  lgseisenlem4  26881  xrge0tsmsd  32209  gsumle  32242  gsumvsca1  32371  gsumvsca2  32372  elrspunidl  32546  matunitlindflem1  36484  pwsgprod  41114  rhmmpllem2  41122  evlsvvvallem  41133  selvvvval  41157  evlselv  41159  mnringmulrcld  42987  gsumge0cl  45087  ply1mulgsum  47071  lincfsuppcl  47094  linccl  47095  lincresunit3  47162  amgmlemALT  47850
  Copyright terms: Public domain W3C validator