MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumcl Structured version   Visualization version   GIF version

Theorem gsumcl 19845
Description: Closure of a finite group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.)
Hypotheses
Ref Expression
gsumcl.b 𝐵 = (Base‘𝐺)
gsumcl.z 0 = (0g𝐺)
gsumcl.g (𝜑𝐺 ∈ CMnd)
gsumcl.a (𝜑𝐴𝑉)
gsumcl.f (𝜑𝐹:𝐴𝐵)
gsumcl.w (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsumcl (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵)

Proof of Theorem gsumcl
StepHypRef Expression
1 gsumcl.b . 2 𝐵 = (Base‘𝐺)
2 gsumcl.z . 2 0 = (0g𝐺)
3 gsumcl.g . 2 (𝜑𝐺 ∈ CMnd)
4 gsumcl.a . 2 (𝜑𝐴𝑉)
5 gsumcl.f . 2 (𝜑𝐹:𝐴𝐵)
6 gsumcl.w . . 3 (𝜑𝐹 finSupp 0 )
76fsuppimpd 9320 . 2 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
81, 2, 3, 4, 5, 7gsumcl2 19844 1 (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   class class class wbr 5107  wf 6507  cfv 6511  (class class class)co 7387   finSupp cfsupp 9312  Basecbs 17179  0gc0g 17402   Σg cgsu 17403  CMndccmn 19710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-0g 17404  df-gsum 17405  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-cntz 19249  df-cmn 19712
This theorem is referenced by:  gsummhm2  19869  gsumsub  19878  gsummptcl  19897  prdsgsum  19911  gsumdixp  20228  frlmphl  21690  frlmup1  21707  islindf4  21747  psrass1lem  21841  rhmpsrlem2  21850  psrbagev2  21985  evlslem3  21987  evlslem1  21989  psdmul  22053  gsumsmonply1  22194  pmatcollpw1  22663  pm2mpcl  22684  mply1topmatcl  22692  mp2pm2mplem2  22694  mp2pm2mp  22698  pm2mpmhmlem2  22706  cayhamlem4  22775  tsmslem1  24016  tsmsgsum  24026  tsmsid  24027  tsmssubm  24030  tsmsxplem1  24040  tsmsxplem2  24041  imasdsf1olem  24261  xrge0gsumle  24722  xrge0tsms  24723  amgm  26901  lgseisenlem3  27288  lgseisenlem4  27289  gsumfs2d  32995  xrge0tsmsd  33002  gsumle  33038  gsumvsca1  33179  gsumvsca2  33180  elrgspnlem1  33193  elrgspn  33197  unitprodclb  33360  elrspunidl  33399  rprmdvdsprod  33505  1arithidomlem1  33506  1arithidom  33508  1arithufdlem3  33517  dfufd2lem  33520  evl1deg2  33546  matunitlindflem1  37610  pwsgprod  42532  evlsvvvallem  42549  selvvvval  42573  evlselv  42575  mnringmulrcld  44217  gsumge0cl  46369  ply1mulgsum  48379  lincfsuppcl  48402  linccl  48403  lincresunit3  48470  amgmlemALT  49792
  Copyright terms: Public domain W3C validator