MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumcl Structured version   Visualization version   GIF version

Theorem gsumcl 19901
Description: Closure of a finite group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.)
Hypotheses
Ref Expression
gsumcl.b 𝐵 = (Base‘𝐺)
gsumcl.z 0 = (0g𝐺)
gsumcl.g (𝜑𝐺 ∈ CMnd)
gsumcl.a (𝜑𝐴𝑉)
gsumcl.f (𝜑𝐹:𝐴𝐵)
gsumcl.w (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsumcl (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵)

Proof of Theorem gsumcl
StepHypRef Expression
1 gsumcl.b . 2 𝐵 = (Base‘𝐺)
2 gsumcl.z . 2 0 = (0g𝐺)
3 gsumcl.g . 2 (𝜑𝐺 ∈ CMnd)
4 gsumcl.a . 2 (𝜑𝐴𝑉)
5 gsumcl.f . 2 (𝜑𝐹:𝐴𝐵)
6 gsumcl.w . . 3 (𝜑𝐹 finSupp 0 )
76fsuppimpd 9386 . 2 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
81, 2, 3, 4, 5, 7gsumcl2 19900 1 (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   class class class wbr 5124  wf 6532  cfv 6536  (class class class)co 7410   finSupp cfsupp 9378  Basecbs 17233  0gc0g 17458   Σg cgsu 17459  CMndccmn 19766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-0g 17460  df-gsum 17461  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-cntz 19305  df-cmn 19768
This theorem is referenced by:  gsummhm2  19925  gsumsub  19934  gsummptcl  19953  prdsgsum  19967  gsumdixp  20284  frlmphl  21746  frlmup1  21763  islindf4  21803  psrass1lem  21897  rhmpsrlem2  21906  psrbagev2  22041  evlslem3  22043  evlslem1  22045  psdmul  22109  gsumsmonply1  22250  pmatcollpw1  22719  pm2mpcl  22740  mply1topmatcl  22748  mp2pm2mplem2  22750  mp2pm2mp  22754  pm2mpmhmlem2  22762  cayhamlem4  22831  tsmslem1  24072  tsmsgsum  24082  tsmsid  24083  tsmssubm  24086  tsmsxplem1  24096  tsmsxplem2  24097  imasdsf1olem  24317  xrge0gsumle  24778  xrge0tsms  24779  amgm  26958  lgseisenlem3  27345  lgseisenlem4  27346  gsumfs2d  33054  xrge0tsmsd  33061  gsumle  33097  gsumvsca1  33228  gsumvsca2  33229  elrgspnlem1  33242  elrgspn  33246  unitprodclb  33409  elrspunidl  33448  rprmdvdsprod  33554  1arithidomlem1  33555  1arithidom  33557  1arithufdlem3  33566  dfufd2lem  33569  evl1deg2  33595  matunitlindflem1  37645  pwsgprod  42542  evlsvvvallem  42559  selvvvval  42583  evlselv  42585  mnringmulrcld  44227  gsumge0cl  46380  ply1mulgsum  48346  lincfsuppcl  48369  linccl  48370  lincresunit3  48437  amgmlemALT  49647
  Copyright terms: Public domain W3C validator