| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumcl | Structured version Visualization version GIF version | ||
| Description: Closure of a finite group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.) |
| Ref | Expression |
|---|---|
| gsumcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumcl.z | ⊢ 0 = (0g‘𝐺) |
| gsumcl.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsumcl.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| gsumcl.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| gsumcl.w | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
| Ref | Expression |
|---|---|
| gsumcl | ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumcl.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsumcl.z | . 2 ⊢ 0 = (0g‘𝐺) | |
| 3 | gsumcl.g | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 4 | gsumcl.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | gsumcl.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 6 | gsumcl.w | . . 3 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
| 7 | 6 | fsuppimpd 9386 | . 2 ⊢ (𝜑 → (𝐹 supp 0 ) ∈ Fin) |
| 8 | 1, 2, 3, 4, 5, 7 | gsumcl2 19900 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 finSupp cfsupp 9378 Basecbs 17233 0gc0g 17458 Σg cgsu 17459 CMndccmn 19766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14354 df-0g 17460 df-gsum 17461 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-cntz 19305 df-cmn 19768 |
| This theorem is referenced by: gsummhm2 19925 gsumsub 19934 gsummptcl 19953 prdsgsum 19967 gsumdixp 20284 frlmphl 21746 frlmup1 21763 islindf4 21803 psrass1lem 21897 rhmpsrlem2 21906 psrbagev2 22041 evlslem3 22043 evlslem1 22045 psdmul 22109 gsumsmonply1 22250 pmatcollpw1 22719 pm2mpcl 22740 mply1topmatcl 22748 mp2pm2mplem2 22750 mp2pm2mp 22754 pm2mpmhmlem2 22762 cayhamlem4 22831 tsmslem1 24072 tsmsgsum 24082 tsmsid 24083 tsmssubm 24086 tsmsxplem1 24096 tsmsxplem2 24097 imasdsf1olem 24317 xrge0gsumle 24778 xrge0tsms 24779 amgm 26958 lgseisenlem3 27345 lgseisenlem4 27346 gsumfs2d 33054 xrge0tsmsd 33061 gsumle 33097 gsumvsca1 33228 gsumvsca2 33229 elrgspnlem1 33242 elrgspn 33246 unitprodclb 33409 elrspunidl 33448 rprmdvdsprod 33554 1arithidomlem1 33555 1arithidom 33557 1arithufdlem3 33566 dfufd2lem 33569 evl1deg2 33595 matunitlindflem1 37645 pwsgprod 42542 evlsvvvallem 42559 selvvvval 42583 evlselv 42585 mnringmulrcld 44227 gsumge0cl 46380 ply1mulgsum 48346 lincfsuppcl 48369 linccl 48370 lincresunit3 48437 amgmlemALT 49647 |
| Copyright terms: Public domain | W3C validator |