![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumcl | Structured version Visualization version GIF version |
Description: Closure of a finite group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.) |
Ref | Expression |
---|---|
gsumcl.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumcl.z | ⊢ 0 = (0g‘𝐺) |
gsumcl.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsumcl.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsumcl.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
gsumcl.w | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
Ref | Expression |
---|---|
gsumcl | ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumcl.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumcl.z | . 2 ⊢ 0 = (0g‘𝐺) | |
3 | gsumcl.g | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | gsumcl.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | gsumcl.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
6 | gsumcl.w | . . 3 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
7 | 6 | fsuppimpd 9407 | . 2 ⊢ (𝜑 → (𝐹 supp 0 ) ∈ Fin) |
8 | 1, 2, 3, 4, 5, 7 | gsumcl2 19947 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 finSupp cfsupp 9399 Basecbs 17245 0gc0g 17486 Σg cgsu 17487 CMndccmn 19813 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-fzo 13692 df-seq 14040 df-hash 14367 df-0g 17488 df-gsum 17489 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-cntz 19348 df-cmn 19815 |
This theorem is referenced by: gsummhm2 19972 gsumsub 19981 gsummptcl 20000 prdsgsum 20014 gsumdixp 20333 frlmphl 21819 frlmup1 21836 islindf4 21876 psrass1lem 21970 rhmpsrlem2 21979 psrbagev2 22120 evlslem3 22122 evlslem1 22124 psdmul 22188 gsumsmonply1 22327 pmatcollpw1 22798 pm2mpcl 22819 mply1topmatcl 22827 mp2pm2mplem2 22829 mp2pm2mp 22833 pm2mpmhmlem2 22841 cayhamlem4 22910 tsmslem1 24153 tsmsgsum 24163 tsmsid 24164 tsmssubm 24167 tsmsxplem1 24177 tsmsxplem2 24178 imasdsf1olem 24399 xrge0gsumle 24869 xrge0tsms 24870 amgm 27049 lgseisenlem3 27436 lgseisenlem4 27437 gsumfs2d 33041 xrge0tsmsd 33048 gsumle 33084 gsumvsca1 33215 gsumvsca2 33216 elrgspnlem1 33232 unitprodclb 33397 elrspunidl 33436 rprmdvdsprod 33542 1arithidomlem1 33543 1arithidom 33545 1arithufdlem3 33554 dfufd2lem 33557 evl1deg2 33582 matunitlindflem1 37603 pwsgprod 42531 evlsvvvallem 42548 selvvvval 42572 evlselv 42574 mnringmulrcld 44224 gsumge0cl 46327 ply1mulgsum 48236 lincfsuppcl 48259 linccl 48260 lincresunit3 48327 amgmlemALT 49034 |
Copyright terms: Public domain | W3C validator |