MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnneip Structured version   Visualization version   GIF version

Theorem opnneip 21863
Description: An open set is a neighborhood of any of its members. (Contributed by NM, 8-Mar-2007.)
Assertion
Ref Expression
opnneip ((𝐽 ∈ Top ∧ 𝑁𝐽𝑃𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))

Proof of Theorem opnneip
StepHypRef Expression
1 snssi 4693 . 2 (𝑃𝑁 → {𝑃} ⊆ 𝑁)
2 opnneiss 21862 . 2 ((𝐽 ∈ Top ∧ 𝑁𝐽 ∧ {𝑃} ⊆ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))
31, 2syl3an3 1166 1 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑃𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088  wcel 2113  wss 3841  {csn 4513  cfv 6333  Topctop 21637  neicnei 21841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-top 21638  df-nei 21842
This theorem is referenced by:  opnnei  21864  neindisj2  21867  iscnp4  22007  cnpnei  22008  hausnei2  22097  llynlly  22221  nllyrest  22230  nllyidm  22233  hausllycmp  22238  cldllycmp  22239  txnlly  22381  flimfil  22713  flimopn  22719  fbflim2  22721  hausflimlem  22723  flimcf  22726  flimsncls  22730  fclsnei  22763  fcfnei  22779  cnextcn  22811  utopreg  22997  blnei  23248  cnllycmp  23701  flimcfil  24059  limcflf  24625  rrhre  31533  cvmlift2lem12  32839
  Copyright terms: Public domain W3C validator