| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opnneip | Structured version Visualization version GIF version | ||
| Description: An open set is a neighborhood of any of its members. (Contributed by NM, 8-Mar-2007.) |
| Ref | Expression |
|---|---|
| opnneip | ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑃 ∈ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4768 | . 2 ⊢ (𝑃 ∈ 𝑁 → {𝑃} ⊆ 𝑁) | |
| 2 | opnneiss 22981 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ {𝑃} ⊆ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) | |
| 3 | 1, 2 | syl3an3 1165 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑃 ∈ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 ⊆ wss 3911 {csn 4585 ‘cfv 6499 Topctop 22756 neicnei 22960 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-top 22757 df-nei 22961 |
| This theorem is referenced by: opnnei 22983 neindisj2 22986 iscnp4 23126 cnpnei 23127 hausnei2 23216 llynlly 23340 nllyrest 23349 nllyidm 23352 hausllycmp 23357 cldllycmp 23358 txnlly 23500 flimfil 23832 flimopn 23838 fbflim2 23840 hausflimlem 23842 flimcf 23845 flimsncls 23849 fclsnei 23882 fcfnei 23898 cnextcn 23930 utopreg 24116 blnei 24366 cnllycmp 24831 flimcfil 25190 limcflf 25758 rrhre 33984 cvmlift2lem12 35274 |
| Copyright terms: Public domain | W3C validator |