MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnneip Structured version   Visualization version   GIF version

Theorem opnneip 23055
Description: An open set is a neighborhood of any of its members. (Contributed by NM, 8-Mar-2007.)
Assertion
Ref Expression
opnneip ((𝐽 ∈ Top ∧ 𝑁𝐽𝑃𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))

Proof of Theorem opnneip
StepHypRef Expression
1 snssi 4784 . 2 (𝑃𝑁 → {𝑃} ⊆ 𝑁)
2 opnneiss 23054 . 2 ((𝐽 ∈ Top ∧ 𝑁𝐽 ∧ {𝑃} ⊆ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))
31, 2syl3an3 1165 1 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑃𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2108  wss 3926  {csn 4601  cfv 6530  Topctop 22829  neicnei 23033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-top 22830  df-nei 23034
This theorem is referenced by:  opnnei  23056  neindisj2  23059  iscnp4  23199  cnpnei  23200  hausnei2  23289  llynlly  23413  nllyrest  23422  nllyidm  23425  hausllycmp  23430  cldllycmp  23431  txnlly  23573  flimfil  23905  flimopn  23911  fbflim2  23913  hausflimlem  23915  flimcf  23918  flimsncls  23922  fclsnei  23955  fcfnei  23971  cnextcn  24003  utopreg  24189  blnei  24439  cnllycmp  24904  flimcfil  25264  limcflf  25832  rrhre  33998  cvmlift2lem12  35282
  Copyright terms: Public domain W3C validator