| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opnneip | Structured version Visualization version GIF version | ||
| Description: An open set is a neighborhood of any of its members. (Contributed by NM, 8-Mar-2007.) |
| Ref | Expression |
|---|---|
| opnneip | ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑃 ∈ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4761 | . 2 ⊢ (𝑃 ∈ 𝑁 → {𝑃} ⊆ 𝑁) | |
| 2 | opnneiss 23053 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ {𝑃} ⊆ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) | |
| 3 | 1, 2 | syl3an3 1165 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑃 ∈ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2113 ⊆ wss 3898 {csn 4577 ‘cfv 6489 Topctop 22828 neicnei 23032 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-top 22829 df-nei 23033 |
| This theorem is referenced by: opnnei 23055 neindisj2 23058 iscnp4 23198 cnpnei 23199 hausnei2 23288 llynlly 23412 nllyrest 23421 nllyidm 23424 hausllycmp 23429 cldllycmp 23430 txnlly 23572 flimfil 23904 flimopn 23910 fbflim2 23912 hausflimlem 23914 flimcf 23917 flimsncls 23921 fclsnei 23954 fcfnei 23970 cnextcn 24002 utopreg 24187 blnei 24437 cnllycmp 24902 flimcfil 25261 limcflf 25829 rrhre 34106 cvmlift2lem12 35430 |
| Copyright terms: Public domain | W3C validator |