| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opnneip | Structured version Visualization version GIF version | ||
| Description: An open set is a neighborhood of any of its members. (Contributed by NM, 8-Mar-2007.) |
| Ref | Expression |
|---|---|
| opnneip | ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑃 ∈ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4755 | . 2 ⊢ (𝑃 ∈ 𝑁 → {𝑃} ⊆ 𝑁) | |
| 2 | opnneiss 23028 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ {𝑃} ⊆ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) | |
| 3 | 1, 2 | syl3an3 1165 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑃 ∈ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2111 ⊆ wss 3897 {csn 4571 ‘cfv 6476 Topctop 22803 neicnei 23007 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-top 22804 df-nei 23008 |
| This theorem is referenced by: opnnei 23030 neindisj2 23033 iscnp4 23173 cnpnei 23174 hausnei2 23263 llynlly 23387 nllyrest 23396 nllyidm 23399 hausllycmp 23404 cldllycmp 23405 txnlly 23547 flimfil 23879 flimopn 23885 fbflim2 23887 hausflimlem 23889 flimcf 23892 flimsncls 23896 fclsnei 23929 fcfnei 23945 cnextcn 23977 utopreg 24162 blnei 24412 cnllycmp 24877 flimcfil 25236 limcflf 25804 rrhre 34026 cvmlift2lem12 35350 |
| Copyright terms: Public domain | W3C validator |