| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opnneip | Structured version Visualization version GIF version | ||
| Description: An open set is a neighborhood of any of its members. (Contributed by NM, 8-Mar-2007.) |
| Ref | Expression |
|---|---|
| opnneip | ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑃 ∈ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4784 | . 2 ⊢ (𝑃 ∈ 𝑁 → {𝑃} ⊆ 𝑁) | |
| 2 | opnneiss 23054 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ {𝑃} ⊆ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) | |
| 3 | 1, 2 | syl3an3 1165 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑃 ∈ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2108 ⊆ wss 3926 {csn 4601 ‘cfv 6530 Topctop 22829 neicnei 23033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-top 22830 df-nei 23034 |
| This theorem is referenced by: opnnei 23056 neindisj2 23059 iscnp4 23199 cnpnei 23200 hausnei2 23289 llynlly 23413 nllyrest 23422 nllyidm 23425 hausllycmp 23430 cldllycmp 23431 txnlly 23573 flimfil 23905 flimopn 23911 fbflim2 23913 hausflimlem 23915 flimcf 23918 flimsncls 23922 fclsnei 23955 fcfnei 23971 cnextcn 24003 utopreg 24189 blnei 24439 cnllycmp 24904 flimcfil 25264 limcflf 25832 rrhre 33998 cvmlift2lem12 35282 |
| Copyright terms: Public domain | W3C validator |