MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmphtr Structured version   Visualization version   GIF version

Theorem hmphtr 23703
Description: "Is homeomorphic to" is transitive. (Contributed by FL, 9-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmphtr ((𝐽𝐾𝐾𝐿) → 𝐽𝐿)

Proof of Theorem hmphtr
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmph 23696 . 2 (𝐽𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅)
2 hmph 23696 . 2 (𝐾𝐿 ↔ (𝐾Homeo𝐿) ≠ ∅)
3 n0 4312 . . 3 ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾))
4 n0 4312 . . 3 ((𝐾Homeo𝐿) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝐾Homeo𝐿))
5 exdistrv 1955 . . . 4 (∃𝑓𝑔(𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑔 ∈ (𝐾Homeo𝐿)) ↔ (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) ∧ ∃𝑔 𝑔 ∈ (𝐾Homeo𝐿)))
6 hmeoco 23692 . . . . . 6 ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑔 ∈ (𝐾Homeo𝐿)) → (𝑔𝑓) ∈ (𝐽Homeo𝐿))
7 hmphi 23697 . . . . . 6 ((𝑔𝑓) ∈ (𝐽Homeo𝐿) → 𝐽𝐿)
86, 7syl 17 . . . . 5 ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑔 ∈ (𝐾Homeo𝐿)) → 𝐽𝐿)
98exlimivv 1932 . . . 4 (∃𝑓𝑔(𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑔 ∈ (𝐾Homeo𝐿)) → 𝐽𝐿)
105, 9sylbir 235 . . 3 ((∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) ∧ ∃𝑔 𝑔 ∈ (𝐾Homeo𝐿)) → 𝐽𝐿)
113, 4, 10syl2anb 598 . 2 (((𝐽Homeo𝐾) ≠ ∅ ∧ (𝐾Homeo𝐿) ≠ ∅) → 𝐽𝐿)
121, 2, 11syl2anb 598 1 ((𝐽𝐾𝐾𝐿) → 𝐽𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2109  wne 2925  c0 4292   class class class wbr 5102  ccom 5635  (class class class)co 7369  Homeochmeo 23673  chmph 23674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-1o 8411  df-map 8778  df-top 22814  df-topon 22831  df-cn 23147  df-hmeo 23675  df-hmph 23676
This theorem is referenced by:  hmpher  23704  xrhmph  24878
  Copyright terms: Public domain W3C validator