| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hmphtr | Structured version Visualization version GIF version | ||
| Description: "Is homeomorphic to" is transitive. (Contributed by FL, 9-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| hmphtr | ⊢ ((𝐽 ≃ 𝐾 ∧ 𝐾 ≃ 𝐿) → 𝐽 ≃ 𝐿) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmph 23670 | . 2 ⊢ (𝐽 ≃ 𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅) | |
| 2 | hmph 23670 | . 2 ⊢ (𝐾 ≃ 𝐿 ↔ (𝐾Homeo𝐿) ≠ ∅) | |
| 3 | n0 4319 | . . 3 ⊢ ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾)) | |
| 4 | n0 4319 | . . 3 ⊢ ((𝐾Homeo𝐿) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝐾Homeo𝐿)) | |
| 5 | exdistrv 1955 | . . . 4 ⊢ (∃𝑓∃𝑔(𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑔 ∈ (𝐾Homeo𝐿)) ↔ (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) ∧ ∃𝑔 𝑔 ∈ (𝐾Homeo𝐿))) | |
| 6 | hmeoco 23666 | . . . . . 6 ⊢ ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑔 ∈ (𝐾Homeo𝐿)) → (𝑔 ∘ 𝑓) ∈ (𝐽Homeo𝐿)) | |
| 7 | hmphi 23671 | . . . . . 6 ⊢ ((𝑔 ∘ 𝑓) ∈ (𝐽Homeo𝐿) → 𝐽 ≃ 𝐿) | |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑔 ∈ (𝐾Homeo𝐿)) → 𝐽 ≃ 𝐿) |
| 9 | 8 | exlimivv 1932 | . . . 4 ⊢ (∃𝑓∃𝑔(𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑔 ∈ (𝐾Homeo𝐿)) → 𝐽 ≃ 𝐿) |
| 10 | 5, 9 | sylbir 235 | . . 3 ⊢ ((∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) ∧ ∃𝑔 𝑔 ∈ (𝐾Homeo𝐿)) → 𝐽 ≃ 𝐿) |
| 11 | 3, 4, 10 | syl2anb 598 | . 2 ⊢ (((𝐽Homeo𝐾) ≠ ∅ ∧ (𝐾Homeo𝐿) ≠ ∅) → 𝐽 ≃ 𝐿) |
| 12 | 1, 2, 11 | syl2anb 598 | 1 ⊢ ((𝐽 ≃ 𝐾 ∧ 𝐾 ≃ 𝐿) → 𝐽 ≃ 𝐿) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ≠ wne 2926 ∅c0 4299 class class class wbr 5110 ∘ ccom 5645 (class class class)co 7390 Homeochmeo 23647 ≃ chmph 23648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-1o 8437 df-map 8804 df-top 22788 df-topon 22805 df-cn 23121 df-hmeo 23649 df-hmph 23650 |
| This theorem is referenced by: hmpher 23678 xrhmph 24852 |
| Copyright terms: Public domain | W3C validator |