|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > hmphtr | Structured version Visualization version GIF version | ||
| Description: "Is homeomorphic to" is transitive. (Contributed by FL, 9-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| hmphtr | ⊢ ((𝐽 ≃ 𝐾 ∧ 𝐾 ≃ 𝐿) → 𝐽 ≃ 𝐿) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hmph 23784 | . 2 ⊢ (𝐽 ≃ 𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅) | |
| 2 | hmph 23784 | . 2 ⊢ (𝐾 ≃ 𝐿 ↔ (𝐾Homeo𝐿) ≠ ∅) | |
| 3 | n0 4353 | . . 3 ⊢ ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾)) | |
| 4 | n0 4353 | . . 3 ⊢ ((𝐾Homeo𝐿) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝐾Homeo𝐿)) | |
| 5 | exdistrv 1955 | . . . 4 ⊢ (∃𝑓∃𝑔(𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑔 ∈ (𝐾Homeo𝐿)) ↔ (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) ∧ ∃𝑔 𝑔 ∈ (𝐾Homeo𝐿))) | |
| 6 | hmeoco 23780 | . . . . . 6 ⊢ ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑔 ∈ (𝐾Homeo𝐿)) → (𝑔 ∘ 𝑓) ∈ (𝐽Homeo𝐿)) | |
| 7 | hmphi 23785 | . . . . . 6 ⊢ ((𝑔 ∘ 𝑓) ∈ (𝐽Homeo𝐿) → 𝐽 ≃ 𝐿) | |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑔 ∈ (𝐾Homeo𝐿)) → 𝐽 ≃ 𝐿) | 
| 9 | 8 | exlimivv 1932 | . . . 4 ⊢ (∃𝑓∃𝑔(𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑔 ∈ (𝐾Homeo𝐿)) → 𝐽 ≃ 𝐿) | 
| 10 | 5, 9 | sylbir 235 | . . 3 ⊢ ((∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) ∧ ∃𝑔 𝑔 ∈ (𝐾Homeo𝐿)) → 𝐽 ≃ 𝐿) | 
| 11 | 3, 4, 10 | syl2anb 598 | . 2 ⊢ (((𝐽Homeo𝐾) ≠ ∅ ∧ (𝐾Homeo𝐿) ≠ ∅) → 𝐽 ≃ 𝐿) | 
| 12 | 1, 2, 11 | syl2anb 598 | 1 ⊢ ((𝐽 ≃ 𝐾 ∧ 𝐾 ≃ 𝐿) → 𝐽 ≃ 𝐿) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2108 ≠ wne 2940 ∅c0 4333 class class class wbr 5143 ∘ ccom 5689 (class class class)co 7431 Homeochmeo 23761 ≃ chmph 23762 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-1o 8506 df-map 8868 df-top 22900 df-topon 22917 df-cn 23235 df-hmeo 23763 df-hmph 23764 | 
| This theorem is referenced by: hmpher 23792 xrhmph 24978 | 
| Copyright terms: Public domain | W3C validator |