MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmphtr Structured version   Visualization version   GIF version

Theorem hmphtr 23791
Description: "Is homeomorphic to" is transitive. (Contributed by FL, 9-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmphtr ((𝐽𝐾𝐾𝐿) → 𝐽𝐿)

Proof of Theorem hmphtr
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmph 23784 . 2 (𝐽𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅)
2 hmph 23784 . 2 (𝐾𝐿 ↔ (𝐾Homeo𝐿) ≠ ∅)
3 n0 4353 . . 3 ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾))
4 n0 4353 . . 3 ((𝐾Homeo𝐿) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝐾Homeo𝐿))
5 exdistrv 1955 . . . 4 (∃𝑓𝑔(𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑔 ∈ (𝐾Homeo𝐿)) ↔ (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) ∧ ∃𝑔 𝑔 ∈ (𝐾Homeo𝐿)))
6 hmeoco 23780 . . . . . 6 ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑔 ∈ (𝐾Homeo𝐿)) → (𝑔𝑓) ∈ (𝐽Homeo𝐿))
7 hmphi 23785 . . . . . 6 ((𝑔𝑓) ∈ (𝐽Homeo𝐿) → 𝐽𝐿)
86, 7syl 17 . . . . 5 ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑔 ∈ (𝐾Homeo𝐿)) → 𝐽𝐿)
98exlimivv 1932 . . . 4 (∃𝑓𝑔(𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑔 ∈ (𝐾Homeo𝐿)) → 𝐽𝐿)
105, 9sylbir 235 . . 3 ((∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) ∧ ∃𝑔 𝑔 ∈ (𝐾Homeo𝐿)) → 𝐽𝐿)
113, 4, 10syl2anb 598 . 2 (((𝐽Homeo𝐾) ≠ ∅ ∧ (𝐾Homeo𝐿) ≠ ∅) → 𝐽𝐿)
121, 2, 11syl2anb 598 1 ((𝐽𝐾𝐾𝐿) → 𝐽𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2108  wne 2940  c0 4333   class class class wbr 5143  ccom 5689  (class class class)co 7431  Homeochmeo 23761  chmph 23762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-1o 8506  df-map 8868  df-top 22900  df-topon 22917  df-cn 23235  df-hmeo 23763  df-hmph 23764
This theorem is referenced by:  hmpher  23792  xrhmph  24978
  Copyright terms: Public domain W3C validator