MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnco Structured version   Visualization version   GIF version

Theorem cnco 23258
Description: The composition of two continuous functions is a continuous function. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnco ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺𝐹) ∈ (𝐽 Cn 𝐿))

Proof of Theorem cnco
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cntop1 23232 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
2 cntop2 23233 . . 3 (𝐺 ∈ (𝐾 Cn 𝐿) → 𝐿 ∈ Top)
31, 2anim12i 611 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐽 ∈ Top ∧ 𝐿 ∈ Top))
4 eqid 2726 . . . . 5 𝐾 = 𝐾
5 eqid 2726 . . . . 5 𝐿 = 𝐿
64, 5cnf 23238 . . . 4 (𝐺 ∈ (𝐾 Cn 𝐿) → 𝐺: 𝐾 𝐿)
7 eqid 2726 . . . . 5 𝐽 = 𝐽
87, 4cnf 23238 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
9 fco 6744 . . . 4 ((𝐺: 𝐾 𝐿𝐹: 𝐽 𝐾) → (𝐺𝐹): 𝐽 𝐿)
106, 8, 9syl2anr 595 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺𝐹): 𝐽 𝐿)
11 cnvco 5884 . . . . . . 7 (𝐺𝐹) = (𝐹𝐺)
1211imaeq1i 6058 . . . . . 6 ((𝐺𝐹) “ 𝑥) = ((𝐹𝐺) “ 𝑥)
13 imaco 6254 . . . . . 6 ((𝐹𝐺) “ 𝑥) = (𝐹 “ (𝐺𝑥))
1412, 13eqtri 2754 . . . . 5 ((𝐺𝐹) “ 𝑥) = (𝐹 “ (𝐺𝑥))
15 simpll 765 . . . . . 6 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥𝐿) → 𝐹 ∈ (𝐽 Cn 𝐾))
16 cnima 23257 . . . . . . 7 ((𝐺 ∈ (𝐾 Cn 𝐿) ∧ 𝑥𝐿) → (𝐺𝑥) ∈ 𝐾)
1716adantll 712 . . . . . 6 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥𝐿) → (𝐺𝑥) ∈ 𝐾)
18 cnima 23257 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐺𝑥) ∈ 𝐾) → (𝐹 “ (𝐺𝑥)) ∈ 𝐽)
1915, 17, 18syl2anc 582 . . . . 5 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥𝐿) → (𝐹 “ (𝐺𝑥)) ∈ 𝐽)
2014, 19eqeltrid 2830 . . . 4 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥𝐿) → ((𝐺𝐹) “ 𝑥) ∈ 𝐽)
2120ralrimiva 3136 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → ∀𝑥𝐿 ((𝐺𝐹) “ 𝑥) ∈ 𝐽)
2210, 21jca 510 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → ((𝐺𝐹): 𝐽 𝐿 ∧ ∀𝑥𝐿 ((𝐺𝐹) “ 𝑥) ∈ 𝐽))
237, 5iscn2 23230 . 2 ((𝐺𝐹) ∈ (𝐽 Cn 𝐿) ↔ ((𝐽 ∈ Top ∧ 𝐿 ∈ Top) ∧ ((𝐺𝐹): 𝐽 𝐿 ∧ ∀𝑥𝐿 ((𝐺𝐹) “ 𝑥) ∈ 𝐽)))
243, 22, 23sylanbrc 581 1 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺𝐹) ∈ (𝐽 Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2099  wral 3051   cuni 4905  ccnv 5673  cima 5677  ccom 5678  wf 6542  (class class class)co 7416  Topctop 22883   Cn ccn 23216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3776  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-fv 6554  df-ov 7419  df-oprab 7420  df-mpo 7421  df-map 8849  df-top 22884  df-topon 22901  df-cn 23219
This theorem is referenced by:  kgencn2  23549  txcn  23618  xkoco1cn  23649  xkoco2cn  23650  xkococnlem  23651  xkococn  23652  cnmpt11  23655  cnmpt21  23663  hmeoco  23764  qtophmeo  23809  htpyco1  24992  htpyco2  24993  phtpyco2  25004  reparphti  25011  reparphtiOLD  25012  reparpht  25013  phtpcco2  25014  copco  25033  pi1cof  25074  pi1coghm  25076  cnpconn  35071  txsconnlem  35081  txsconn  35082  cvmlift3lem2  35161  cvmlift3lem4  35163  cvmlift3lem5  35164  cvmlift3lem6  35165  hausgraph  42907
  Copyright terms: Public domain W3C validator