MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnco Structured version   Visualization version   GIF version

Theorem cnco 23290
Description: The composition of two continuous functions is a continuous function. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnco ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺𝐹) ∈ (𝐽 Cn 𝐿))

Proof of Theorem cnco
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cntop1 23264 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
2 cntop2 23265 . . 3 (𝐺 ∈ (𝐾 Cn 𝐿) → 𝐿 ∈ Top)
31, 2anim12i 613 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐽 ∈ Top ∧ 𝐿 ∈ Top))
4 eqid 2735 . . . . 5 𝐾 = 𝐾
5 eqid 2735 . . . . 5 𝐿 = 𝐿
64, 5cnf 23270 . . . 4 (𝐺 ∈ (𝐾 Cn 𝐿) → 𝐺: 𝐾 𝐿)
7 eqid 2735 . . . . 5 𝐽 = 𝐽
87, 4cnf 23270 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
9 fco 6761 . . . 4 ((𝐺: 𝐾 𝐿𝐹: 𝐽 𝐾) → (𝐺𝐹): 𝐽 𝐿)
106, 8, 9syl2anr 597 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺𝐹): 𝐽 𝐿)
11 cnvco 5899 . . . . . . 7 (𝐺𝐹) = (𝐹𝐺)
1211imaeq1i 6077 . . . . . 6 ((𝐺𝐹) “ 𝑥) = ((𝐹𝐺) “ 𝑥)
13 imaco 6273 . . . . . 6 ((𝐹𝐺) “ 𝑥) = (𝐹 “ (𝐺𝑥))
1412, 13eqtri 2763 . . . . 5 ((𝐺𝐹) “ 𝑥) = (𝐹 “ (𝐺𝑥))
15 simpll 767 . . . . . 6 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥𝐿) → 𝐹 ∈ (𝐽 Cn 𝐾))
16 cnima 23289 . . . . . . 7 ((𝐺 ∈ (𝐾 Cn 𝐿) ∧ 𝑥𝐿) → (𝐺𝑥) ∈ 𝐾)
1716adantll 714 . . . . . 6 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥𝐿) → (𝐺𝑥) ∈ 𝐾)
18 cnima 23289 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐺𝑥) ∈ 𝐾) → (𝐹 “ (𝐺𝑥)) ∈ 𝐽)
1915, 17, 18syl2anc 584 . . . . 5 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥𝐿) → (𝐹 “ (𝐺𝑥)) ∈ 𝐽)
2014, 19eqeltrid 2843 . . . 4 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥𝐿) → ((𝐺𝐹) “ 𝑥) ∈ 𝐽)
2120ralrimiva 3144 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → ∀𝑥𝐿 ((𝐺𝐹) “ 𝑥) ∈ 𝐽)
2210, 21jca 511 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → ((𝐺𝐹): 𝐽 𝐿 ∧ ∀𝑥𝐿 ((𝐺𝐹) “ 𝑥) ∈ 𝐽))
237, 5iscn2 23262 . 2 ((𝐺𝐹) ∈ (𝐽 Cn 𝐿) ↔ ((𝐽 ∈ Top ∧ 𝐿 ∈ Top) ∧ ((𝐺𝐹): 𝐽 𝐿 ∧ ∀𝑥𝐿 ((𝐺𝐹) “ 𝑥) ∈ 𝐽)))
243, 22, 23sylanbrc 583 1 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺𝐹) ∈ (𝐽 Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2106  wral 3059   cuni 4912  ccnv 5688  cima 5692  ccom 5693  wf 6559  (class class class)co 7431  Topctop 22915   Cn ccn 23248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-top 22916  df-topon 22933  df-cn 23251
This theorem is referenced by:  kgencn2  23581  txcn  23650  xkoco1cn  23681  xkoco2cn  23682  xkococnlem  23683  xkococn  23684  cnmpt11  23687  cnmpt21  23695  hmeoco  23796  qtophmeo  23841  htpyco1  25024  htpyco2  25025  phtpyco2  25036  reparphti  25043  reparphtiOLD  25044  reparpht  25045  phtpcco2  25046  copco  25065  pi1cof  25106  pi1coghm  25108  cnpconn  35215  txsconnlem  35225  txsconn  35226  cvmlift3lem2  35305  cvmlift3lem4  35307  cvmlift3lem5  35308  cvmlift3lem6  35309  hausgraph  43194
  Copyright terms: Public domain W3C validator