MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnco Structured version   Visualization version   GIF version

Theorem cnco 23275
Description: The composition of two continuous functions is a continuous function. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnco ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺𝐹) ∈ (𝐽 Cn 𝐿))

Proof of Theorem cnco
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cntop1 23249 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
2 cntop2 23250 . . 3 (𝐺 ∈ (𝐾 Cn 𝐿) → 𝐿 ∈ Top)
31, 2anim12i 613 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐽 ∈ Top ∧ 𝐿 ∈ Top))
4 eqid 2736 . . . . 5 𝐾 = 𝐾
5 eqid 2736 . . . . 5 𝐿 = 𝐿
64, 5cnf 23255 . . . 4 (𝐺 ∈ (𝐾 Cn 𝐿) → 𝐺: 𝐾 𝐿)
7 eqid 2736 . . . . 5 𝐽 = 𝐽
87, 4cnf 23255 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
9 fco 6759 . . . 4 ((𝐺: 𝐾 𝐿𝐹: 𝐽 𝐾) → (𝐺𝐹): 𝐽 𝐿)
106, 8, 9syl2anr 597 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺𝐹): 𝐽 𝐿)
11 cnvco 5895 . . . . . . 7 (𝐺𝐹) = (𝐹𝐺)
1211imaeq1i 6074 . . . . . 6 ((𝐺𝐹) “ 𝑥) = ((𝐹𝐺) “ 𝑥)
13 imaco 6270 . . . . . 6 ((𝐹𝐺) “ 𝑥) = (𝐹 “ (𝐺𝑥))
1412, 13eqtri 2764 . . . . 5 ((𝐺𝐹) “ 𝑥) = (𝐹 “ (𝐺𝑥))
15 simpll 766 . . . . . 6 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥𝐿) → 𝐹 ∈ (𝐽 Cn 𝐾))
16 cnima 23274 . . . . . . 7 ((𝐺 ∈ (𝐾 Cn 𝐿) ∧ 𝑥𝐿) → (𝐺𝑥) ∈ 𝐾)
1716adantll 714 . . . . . 6 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥𝐿) → (𝐺𝑥) ∈ 𝐾)
18 cnima 23274 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐺𝑥) ∈ 𝐾) → (𝐹 “ (𝐺𝑥)) ∈ 𝐽)
1915, 17, 18syl2anc 584 . . . . 5 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥𝐿) → (𝐹 “ (𝐺𝑥)) ∈ 𝐽)
2014, 19eqeltrid 2844 . . . 4 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥𝐿) → ((𝐺𝐹) “ 𝑥) ∈ 𝐽)
2120ralrimiva 3145 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → ∀𝑥𝐿 ((𝐺𝐹) “ 𝑥) ∈ 𝐽)
2210, 21jca 511 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → ((𝐺𝐹): 𝐽 𝐿 ∧ ∀𝑥𝐿 ((𝐺𝐹) “ 𝑥) ∈ 𝐽))
237, 5iscn2 23247 . 2 ((𝐺𝐹) ∈ (𝐽 Cn 𝐿) ↔ ((𝐽 ∈ Top ∧ 𝐿 ∈ Top) ∧ ((𝐺𝐹): 𝐽 𝐿 ∧ ∀𝑥𝐿 ((𝐺𝐹) “ 𝑥) ∈ 𝐽)))
243, 22, 23sylanbrc 583 1 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺𝐹) ∈ (𝐽 Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  wral 3060   cuni 4906  ccnv 5683  cima 5687  ccom 5688  wf 6556  (class class class)co 7432  Topctop 22900   Cn ccn 23233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-map 8869  df-top 22901  df-topon 22918  df-cn 23236
This theorem is referenced by:  kgencn2  23566  txcn  23635  xkoco1cn  23666  xkoco2cn  23667  xkococnlem  23668  xkococn  23669  cnmpt11  23672  cnmpt21  23680  hmeoco  23781  qtophmeo  23826  htpyco1  25011  htpyco2  25012  phtpyco2  25023  reparphti  25030  reparphtiOLD  25031  reparpht  25032  phtpcco2  25033  copco  25052  pi1cof  25093  pi1coghm  25095  cnpconn  35236  txsconnlem  35246  txsconn  35247  cvmlift3lem2  35326  cvmlift3lem4  35328  cvmlift3lem5  35329  cvmlift3lem6  35330  hausgraph  43222
  Copyright terms: Public domain W3C validator