MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnco Structured version   Visualization version   GIF version

Theorem cnco 21871
Description: The composition of two continuous functions is a continuous function. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnco ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺𝐹) ∈ (𝐽 Cn 𝐿))

Proof of Theorem cnco
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cntop1 21845 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
2 cntop2 21846 . . 3 (𝐺 ∈ (𝐾 Cn 𝐿) → 𝐿 ∈ Top)
31, 2anim12i 615 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐽 ∈ Top ∧ 𝐿 ∈ Top))
4 eqid 2798 . . . . 5 𝐾 = 𝐾
5 eqid 2798 . . . . 5 𝐿 = 𝐿
64, 5cnf 21851 . . . 4 (𝐺 ∈ (𝐾 Cn 𝐿) → 𝐺: 𝐾 𝐿)
7 eqid 2798 . . . . 5 𝐽 = 𝐽
87, 4cnf 21851 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
9 fco 6505 . . . 4 ((𝐺: 𝐾 𝐿𝐹: 𝐽 𝐾) → (𝐺𝐹): 𝐽 𝐿)
106, 8, 9syl2anr 599 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺𝐹): 𝐽 𝐿)
11 cnvco 5720 . . . . . . 7 (𝐺𝐹) = (𝐹𝐺)
1211imaeq1i 5893 . . . . . 6 ((𝐺𝐹) “ 𝑥) = ((𝐹𝐺) “ 𝑥)
13 imaco 6071 . . . . . 6 ((𝐹𝐺) “ 𝑥) = (𝐹 “ (𝐺𝑥))
1412, 13eqtri 2821 . . . . 5 ((𝐺𝐹) “ 𝑥) = (𝐹 “ (𝐺𝑥))
15 simpll 766 . . . . . 6 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥𝐿) → 𝐹 ∈ (𝐽 Cn 𝐾))
16 cnima 21870 . . . . . . 7 ((𝐺 ∈ (𝐾 Cn 𝐿) ∧ 𝑥𝐿) → (𝐺𝑥) ∈ 𝐾)
1716adantll 713 . . . . . 6 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥𝐿) → (𝐺𝑥) ∈ 𝐾)
18 cnima 21870 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐺𝑥) ∈ 𝐾) → (𝐹 “ (𝐺𝑥)) ∈ 𝐽)
1915, 17, 18syl2anc 587 . . . . 5 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥𝐿) → (𝐹 “ (𝐺𝑥)) ∈ 𝐽)
2014, 19eqeltrid 2894 . . . 4 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥𝐿) → ((𝐺𝐹) “ 𝑥) ∈ 𝐽)
2120ralrimiva 3149 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → ∀𝑥𝐿 ((𝐺𝐹) “ 𝑥) ∈ 𝐽)
2210, 21jca 515 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → ((𝐺𝐹): 𝐽 𝐿 ∧ ∀𝑥𝐿 ((𝐺𝐹) “ 𝑥) ∈ 𝐽))
237, 5iscn2 21843 . 2 ((𝐺𝐹) ∈ (𝐽 Cn 𝐿) ↔ ((𝐽 ∈ Top ∧ 𝐿 ∈ Top) ∧ ((𝐺𝐹): 𝐽 𝐿 ∧ ∀𝑥𝐿 ((𝐺𝐹) “ 𝑥) ∈ 𝐽)))
243, 22, 23sylanbrc 586 1 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺𝐹) ∈ (𝐽 Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2111  wral 3106   cuni 4800  ccnv 5518  cima 5522  ccom 5523  wf 6320  (class class class)co 7135  Topctop 21498   Cn ccn 21829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-map 8391  df-top 21499  df-topon 21516  df-cn 21832
This theorem is referenced by:  kgencn2  22162  txcn  22231  xkoco1cn  22262  xkoco2cn  22263  xkococnlem  22264  xkococn  22265  cnmpt11  22268  cnmpt21  22276  hmeoco  22377  qtophmeo  22422  htpyco1  23583  htpyco2  23584  phtpyco2  23595  reparphti  23602  reparpht  23603  phtpcco2  23604  copco  23623  pi1cof  23664  pi1coghm  23666  cnpconn  32590  txsconnlem  32600  txsconn  32601  cvmlift3lem2  32680  cvmlift3lem4  32682  cvmlift3lem5  32683  cvmlift3lem6  32684  hausgraph  40156
  Copyright terms: Public domain W3C validator