| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnco | Structured version Visualization version GIF version | ||
| Description: The composition of two continuous functions is a continuous function. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnco | ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺 ∘ 𝐹) ∈ (𝐽 Cn 𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntop1 23183 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
| 2 | cntop2 23184 | . . 3 ⊢ (𝐺 ∈ (𝐾 Cn 𝐿) → 𝐿 ∈ Top) | |
| 3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐽 ∈ Top ∧ 𝐿 ∈ Top)) |
| 4 | eqid 2736 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 5 | eqid 2736 | . . . . 5 ⊢ ∪ 𝐿 = ∪ 𝐿 | |
| 6 | 4, 5 | cnf 23189 | . . . 4 ⊢ (𝐺 ∈ (𝐾 Cn 𝐿) → 𝐺:∪ 𝐾⟶∪ 𝐿) |
| 7 | eqid 2736 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 8 | 7, 4 | cnf 23189 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
| 9 | fco 6735 | . . . 4 ⊢ ((𝐺:∪ 𝐾⟶∪ 𝐿 ∧ 𝐹:∪ 𝐽⟶∪ 𝐾) → (𝐺 ∘ 𝐹):∪ 𝐽⟶∪ 𝐿) | |
| 10 | 6, 8, 9 | syl2anr 597 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺 ∘ 𝐹):∪ 𝐽⟶∪ 𝐿) |
| 11 | cnvco 5870 | . . . . . . 7 ⊢ ◡(𝐺 ∘ 𝐹) = (◡𝐹 ∘ ◡𝐺) | |
| 12 | 11 | imaeq1i 6049 | . . . . . 6 ⊢ (◡(𝐺 ∘ 𝐹) “ 𝑥) = ((◡𝐹 ∘ ◡𝐺) “ 𝑥) |
| 13 | imaco 6245 | . . . . . 6 ⊢ ((◡𝐹 ∘ ◡𝐺) “ 𝑥) = (◡𝐹 “ (◡𝐺 “ 𝑥)) | |
| 14 | 12, 13 | eqtri 2759 | . . . . 5 ⊢ (◡(𝐺 ∘ 𝐹) “ 𝑥) = (◡𝐹 “ (◡𝐺 “ 𝑥)) |
| 15 | simpll 766 | . . . . . 6 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥 ∈ 𝐿) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 16 | cnima 23208 | . . . . . . 7 ⊢ ((𝐺 ∈ (𝐾 Cn 𝐿) ∧ 𝑥 ∈ 𝐿) → (◡𝐺 “ 𝑥) ∈ 𝐾) | |
| 17 | 16 | adantll 714 | . . . . . 6 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥 ∈ 𝐿) → (◡𝐺 “ 𝑥) ∈ 𝐾) |
| 18 | cnima 23208 | . . . . . 6 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (◡𝐺 “ 𝑥) ∈ 𝐾) → (◡𝐹 “ (◡𝐺 “ 𝑥)) ∈ 𝐽) | |
| 19 | 15, 17, 18 | syl2anc 584 | . . . . 5 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥 ∈ 𝐿) → (◡𝐹 “ (◡𝐺 “ 𝑥)) ∈ 𝐽) |
| 20 | 14, 19 | eqeltrid 2839 | . . . 4 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥 ∈ 𝐿) → (◡(𝐺 ∘ 𝐹) “ 𝑥) ∈ 𝐽) |
| 21 | 20 | ralrimiva 3133 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → ∀𝑥 ∈ 𝐿 (◡(𝐺 ∘ 𝐹) “ 𝑥) ∈ 𝐽) |
| 22 | 10, 21 | jca 511 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → ((𝐺 ∘ 𝐹):∪ 𝐽⟶∪ 𝐿 ∧ ∀𝑥 ∈ 𝐿 (◡(𝐺 ∘ 𝐹) “ 𝑥) ∈ 𝐽)) |
| 23 | 7, 5 | iscn2 23181 | . 2 ⊢ ((𝐺 ∘ 𝐹) ∈ (𝐽 Cn 𝐿) ↔ ((𝐽 ∈ Top ∧ 𝐿 ∈ Top) ∧ ((𝐺 ∘ 𝐹):∪ 𝐽⟶∪ 𝐿 ∧ ∀𝑥 ∈ 𝐿 (◡(𝐺 ∘ 𝐹) “ 𝑥) ∈ 𝐽))) |
| 24 | 3, 22, 23 | sylanbrc 583 | 1 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺 ∘ 𝐹) ∈ (𝐽 Cn 𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3052 ∪ cuni 4888 ◡ccnv 5658 “ cima 5662 ∘ ccom 5663 ⟶wf 6532 (class class class)co 7410 Topctop 22836 Cn ccn 23167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-map 8847 df-top 22837 df-topon 22854 df-cn 23170 |
| This theorem is referenced by: kgencn2 23500 txcn 23569 xkoco1cn 23600 xkoco2cn 23601 xkococnlem 23602 xkococn 23603 cnmpt11 23606 cnmpt21 23614 hmeoco 23715 qtophmeo 23760 htpyco1 24933 htpyco2 24934 phtpyco2 24945 reparphti 24952 reparphtiOLD 24953 reparpht 24954 phtpcco2 24955 copco 24974 pi1cof 25015 pi1coghm 25017 cnpconn 35257 txsconnlem 35267 txsconn 35268 cvmlift3lem2 35347 cvmlift3lem4 35349 cvmlift3lem5 35350 cvmlift3lem6 35351 hausgraph 43196 |
| Copyright terms: Public domain | W3C validator |