| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnf2 | Structured version Visualization version GIF version | ||
| Description: A continuous function is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnf2 | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscn 23122 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) | |
| 2 | 1 | simprbda 498 | . 2 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
| 3 | 2 | 3impa 1109 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3044 ◡ccnv 5637 “ cima 5641 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 TopOnctopon 22797 Cn ccn 23111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-top 22781 df-topon 22798 df-cn 23114 |
| This theorem is referenced by: iscncl 23156 cncls2 23160 cncls 23161 cnntr 23162 cnrest2 23173 cnrest2r 23174 ptcn 23514 txdis1cn 23522 lmcn2 23536 cnmpt11 23550 cnmpt1t 23552 cnmpt12 23554 cnmpt21 23558 cnmpt2t 23560 cnmpt22 23561 cnmpt22f 23562 cnmptcom 23565 cnmptkp 23567 cnmptk1 23568 cnmpt1k 23569 cnmptkk 23570 cnmptk1p 23572 cnmptk2 23573 cnmpt2k 23575 qtopss 23602 qtopeu 23603 qtopomap 23605 qtopcmap 23606 hmeof1o2 23650 xpstopnlem1 23696 xkocnv 23701 xkohmeo 23702 qtophmeo 23704 cnmpt1plusg 23974 cnmpt2plusg 23975 tsmsmhm 24033 cnmpt1vsca 24081 cnmpt2vsca 24082 cnmpt1ds 24731 cnmpt2ds 24732 fsumcn 24761 cnmpopc 24822 htpyco1 24877 htpyco2 24878 phtpyco2 24889 pi1xfrf 24953 pi1xfr 24955 pi1xfrcnvlem 24956 pi1xfrcnv 24957 pi1cof 24959 pi1coghm 24961 cnmpt1ip 25147 cnmpt2ip 25148 txsconnlem 35227 txsconn 35228 cvmlift3lem6 35311 fcnre 45019 refsumcn 45024 refsum2cnlem1 45031 fprodcnlem 45597 icccncfext 45885 itgsubsticclem 45973 |
| Copyright terms: Public domain | W3C validator |