| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnf2 | Structured version Visualization version GIF version | ||
| Description: A continuous function is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnf2 | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscn 23120 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) | |
| 2 | 1 | simprbda 498 | . 2 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
| 3 | 2 | 3impa 1109 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3044 ◡ccnv 5618 “ cima 5622 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 TopOnctopon 22795 Cn ccn 23109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-map 8755 df-top 22779 df-topon 22796 df-cn 23112 |
| This theorem is referenced by: iscncl 23154 cncls2 23158 cncls 23159 cnntr 23160 cnrest2 23171 cnrest2r 23172 ptcn 23512 txdis1cn 23520 lmcn2 23534 cnmpt11 23548 cnmpt1t 23550 cnmpt12 23552 cnmpt21 23556 cnmpt2t 23558 cnmpt22 23559 cnmpt22f 23560 cnmptcom 23563 cnmptkp 23565 cnmptk1 23566 cnmpt1k 23567 cnmptkk 23568 cnmptk1p 23570 cnmptk2 23571 cnmpt2k 23573 qtopss 23600 qtopeu 23601 qtopomap 23603 qtopcmap 23604 hmeof1o2 23648 xpstopnlem1 23694 xkocnv 23699 xkohmeo 23700 qtophmeo 23702 cnmpt1plusg 23972 cnmpt2plusg 23973 tsmsmhm 24031 cnmpt1vsca 24079 cnmpt2vsca 24080 cnmpt1ds 24729 cnmpt2ds 24730 fsumcn 24759 cnmpopc 24820 htpyco1 24875 htpyco2 24876 phtpyco2 24887 pi1xfrf 24951 pi1xfr 24953 pi1xfrcnvlem 24954 pi1xfrcnv 24955 pi1cof 24957 pi1coghm 24959 cnmpt1ip 25145 cnmpt2ip 25146 txsconnlem 35233 txsconn 35234 cvmlift3lem6 35317 fcnre 45023 refsumcn 45028 refsum2cnlem1 45035 fprodcnlem 45600 icccncfext 45888 itgsubsticclem 45976 |
| Copyright terms: Public domain | W3C validator |