| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnf2 | Structured version Visualization version GIF version | ||
| Description: A continuous function is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnf2 | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscn 23178 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) | |
| 2 | 1 | simprbda 498 | . 2 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
| 3 | 2 | 3impa 1109 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3052 ◡ccnv 5658 “ cima 5662 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 TopOnctopon 22853 Cn ccn 23167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-map 8847 df-top 22837 df-topon 22854 df-cn 23170 |
| This theorem is referenced by: iscncl 23212 cncls2 23216 cncls 23217 cnntr 23218 cnrest2 23229 cnrest2r 23230 ptcn 23570 txdis1cn 23578 lmcn2 23592 cnmpt11 23606 cnmpt1t 23608 cnmpt12 23610 cnmpt21 23614 cnmpt2t 23616 cnmpt22 23617 cnmpt22f 23618 cnmptcom 23621 cnmptkp 23623 cnmptk1 23624 cnmpt1k 23625 cnmptkk 23626 cnmptk1p 23628 cnmptk2 23629 cnmpt2k 23631 qtopss 23658 qtopeu 23659 qtopomap 23661 qtopcmap 23662 hmeof1o2 23706 xpstopnlem1 23752 xkocnv 23757 xkohmeo 23758 qtophmeo 23760 cnmpt1plusg 24030 cnmpt2plusg 24031 tsmsmhm 24089 cnmpt1vsca 24137 cnmpt2vsca 24138 cnmpt1ds 24787 cnmpt2ds 24788 fsumcn 24817 cnmpopc 24878 htpyco1 24933 htpyco2 24934 phtpyco2 24945 pi1xfrf 25009 pi1xfr 25011 pi1xfrcnvlem 25012 pi1xfrcnv 25013 pi1cof 25015 pi1coghm 25017 cnmpt1ip 25204 cnmpt2ip 25205 txsconnlem 35267 txsconn 35268 cvmlift3lem6 35351 fcnre 45016 refsumcn 45021 refsum2cnlem1 45028 fprodcnlem 45595 icccncfext 45883 itgsubsticclem 45971 |
| Copyright terms: Public domain | W3C validator |