MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnf2 Structured version   Visualization version   GIF version

Theorem cnf2 21851
Description: A continuous function is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnf2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋𝑌)

Proof of Theorem cnf2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iscn 21837 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
21simprbda 501 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋𝑌)
323impa 1106 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083  wcel 2110  wral 3138  ccnv 5549  cima 5553  wf 6346  cfv 6350  (class class class)co 7150  TopOnctopon 21512   Cn ccn 21826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-map 8402  df-top 21496  df-topon 21513  df-cn 21829
This theorem is referenced by:  iscncl  21871  cncls2  21875  cncls  21876  cnntr  21877  cnrest2  21888  cnrest2r  21889  ptcn  22229  txdis1cn  22237  lmcn2  22251  cnmpt11  22265  cnmpt1t  22267  cnmpt12  22269  cnmpt21  22273  cnmpt2t  22275  cnmpt22  22276  cnmpt22f  22277  cnmptcom  22280  cnmptkp  22282  cnmptk1  22283  cnmpt1k  22284  cnmptkk  22285  cnmptk1p  22287  cnmptk2  22288  cnmpt2k  22290  qtopss  22317  qtopeu  22318  qtopomap  22320  qtopcmap  22321  hmeof1o2  22365  xpstopnlem1  22411  xkocnv  22416  xkohmeo  22417  qtophmeo  22419  cnmpt1plusg  22689  cnmpt2plusg  22690  tsmsmhm  22748  cnmpt1vsca  22796  cnmpt2vsca  22797  cnmpt1ds  23444  cnmpt2ds  23445  fsumcn  23472  cnmpopc  23526  htpyco1  23576  htpyco2  23577  phtpyco2  23588  pi1xfrf  23651  pi1xfr  23653  pi1xfrcnvlem  23654  pi1xfrcnv  23655  pi1cof  23657  pi1coghm  23659  cnmpt1ip  23844  cnmpt2ip  23845  txsconnlem  32482  txsconn  32483  cvmlift3lem6  32566  fcnre  41275  refsumcn  41280  refsum2cnlem1  41287  fprodcnlem  41872  icccncfext  42162  itgsubsticclem  42252
  Copyright terms: Public domain W3C validator