| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnf2 | Structured version Visualization version GIF version | ||
| Description: A continuous function is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnf2 | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscn 23155 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) | |
| 2 | 1 | simprbda 498 | . 2 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
| 3 | 2 | 3impa 1109 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3044 ◡ccnv 5630 “ cima 5634 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 TopOnctopon 22830 Cn ccn 23144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-top 22814 df-topon 22831 df-cn 23147 |
| This theorem is referenced by: iscncl 23189 cncls2 23193 cncls 23194 cnntr 23195 cnrest2 23206 cnrest2r 23207 ptcn 23547 txdis1cn 23555 lmcn2 23569 cnmpt11 23583 cnmpt1t 23585 cnmpt12 23587 cnmpt21 23591 cnmpt2t 23593 cnmpt22 23594 cnmpt22f 23595 cnmptcom 23598 cnmptkp 23600 cnmptk1 23601 cnmpt1k 23602 cnmptkk 23603 cnmptk1p 23605 cnmptk2 23606 cnmpt2k 23608 qtopss 23635 qtopeu 23636 qtopomap 23638 qtopcmap 23639 hmeof1o2 23683 xpstopnlem1 23729 xkocnv 23734 xkohmeo 23735 qtophmeo 23737 cnmpt1plusg 24007 cnmpt2plusg 24008 tsmsmhm 24066 cnmpt1vsca 24114 cnmpt2vsca 24115 cnmpt1ds 24764 cnmpt2ds 24765 fsumcn 24794 cnmpopc 24855 htpyco1 24910 htpyco2 24911 phtpyco2 24922 pi1xfrf 24986 pi1xfr 24988 pi1xfrcnvlem 24989 pi1xfrcnv 24990 pi1cof 24992 pi1coghm 24994 cnmpt1ip 25180 cnmpt2ip 25181 txsconnlem 35220 txsconn 35221 cvmlift3lem6 35304 fcnre 45012 refsumcn 45017 refsum2cnlem1 45024 fprodcnlem 45590 icccncfext 45878 itgsubsticclem 45966 |
| Copyright terms: Public domain | W3C validator |