| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnf2 | Structured version Visualization version GIF version | ||
| Description: A continuous function is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnf2 | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscn 23156 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) | |
| 2 | 1 | simprbda 498 | . 2 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
| 3 | 2 | 3impa 1109 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3044 ◡ccnv 5630 “ cima 5634 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 TopOnctopon 22831 Cn ccn 23145 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-top 22815 df-topon 22832 df-cn 23148 |
| This theorem is referenced by: iscncl 23190 cncls2 23194 cncls 23195 cnntr 23196 cnrest2 23207 cnrest2r 23208 ptcn 23548 txdis1cn 23556 lmcn2 23570 cnmpt11 23584 cnmpt1t 23586 cnmpt12 23588 cnmpt21 23592 cnmpt2t 23594 cnmpt22 23595 cnmpt22f 23596 cnmptcom 23599 cnmptkp 23601 cnmptk1 23602 cnmpt1k 23603 cnmptkk 23604 cnmptk1p 23606 cnmptk2 23607 cnmpt2k 23609 qtopss 23636 qtopeu 23637 qtopomap 23639 qtopcmap 23640 hmeof1o2 23684 xpstopnlem1 23730 xkocnv 23735 xkohmeo 23736 qtophmeo 23738 cnmpt1plusg 24008 cnmpt2plusg 24009 tsmsmhm 24067 cnmpt1vsca 24115 cnmpt2vsca 24116 cnmpt1ds 24765 cnmpt2ds 24766 fsumcn 24795 cnmpopc 24856 htpyco1 24911 htpyco2 24912 phtpyco2 24923 pi1xfrf 24987 pi1xfr 24989 pi1xfrcnvlem 24990 pi1xfrcnv 24991 pi1cof 24993 pi1coghm 24995 cnmpt1ip 25181 cnmpt2ip 25182 txsconnlem 35221 txsconn 35222 cvmlift3lem6 35305 fcnre 45013 refsumcn 45018 refsum2cnlem1 45025 fprodcnlem 45591 icccncfext 45879 itgsubsticclem 45967 |
| Copyright terms: Public domain | W3C validator |