MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnf2 Structured version   Visualization version   GIF version

Theorem cnf2 22308
Description: A continuous function is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnf2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋𝑌)

Proof of Theorem cnf2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iscn 22294 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
21simprbda 498 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋𝑌)
323impa 1108 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wcel 2108  wral 3063  ccnv 5579  cima 5583  wf 6414  cfv 6418  (class class class)co 7255  TopOnctopon 21967   Cn ccn 22283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-top 21951  df-topon 21968  df-cn 22286
This theorem is referenced by:  iscncl  22328  cncls2  22332  cncls  22333  cnntr  22334  cnrest2  22345  cnrest2r  22346  ptcn  22686  txdis1cn  22694  lmcn2  22708  cnmpt11  22722  cnmpt1t  22724  cnmpt12  22726  cnmpt21  22730  cnmpt2t  22732  cnmpt22  22733  cnmpt22f  22734  cnmptcom  22737  cnmptkp  22739  cnmptk1  22740  cnmpt1k  22741  cnmptkk  22742  cnmptk1p  22744  cnmptk2  22745  cnmpt2k  22747  qtopss  22774  qtopeu  22775  qtopomap  22777  qtopcmap  22778  hmeof1o2  22822  xpstopnlem1  22868  xkocnv  22873  xkohmeo  22874  qtophmeo  22876  cnmpt1plusg  23146  cnmpt2plusg  23147  tsmsmhm  23205  cnmpt1vsca  23253  cnmpt2vsca  23254  cnmpt1ds  23911  cnmpt2ds  23912  fsumcn  23939  cnmpopc  23997  htpyco1  24047  htpyco2  24048  phtpyco2  24059  pi1xfrf  24122  pi1xfr  24124  pi1xfrcnvlem  24125  pi1xfrcnv  24126  pi1cof  24128  pi1coghm  24130  cnmpt1ip  24316  cnmpt2ip  24317  txsconnlem  33102  txsconn  33103  cvmlift3lem6  33186  fcnre  42457  refsumcn  42462  refsum2cnlem1  42469  fprodcnlem  43030  icccncfext  43318  itgsubsticclem  43406
  Copyright terms: Public domain W3C validator