MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnf2 Structured version   Visualization version   GIF version

Theorem cnf2 21854
Description: A continuous function is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnf2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋𝑌)

Proof of Theorem cnf2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iscn 21840 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
21simprbda 502 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋𝑌)
323impa 1107 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084  wcel 2111  wral 3106  ccnv 5518  cima 5522  wf 6320  cfv 6324  (class class class)co 7135  TopOnctopon 21515   Cn ccn 21829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-map 8391  df-top 21499  df-topon 21516  df-cn 21832
This theorem is referenced by:  iscncl  21874  cncls2  21878  cncls  21879  cnntr  21880  cnrest2  21891  cnrest2r  21892  ptcn  22232  txdis1cn  22240  lmcn2  22254  cnmpt11  22268  cnmpt1t  22270  cnmpt12  22272  cnmpt21  22276  cnmpt2t  22278  cnmpt22  22279  cnmpt22f  22280  cnmptcom  22283  cnmptkp  22285  cnmptk1  22286  cnmpt1k  22287  cnmptkk  22288  cnmptk1p  22290  cnmptk2  22291  cnmpt2k  22293  qtopss  22320  qtopeu  22321  qtopomap  22323  qtopcmap  22324  hmeof1o2  22368  xpstopnlem1  22414  xkocnv  22419  xkohmeo  22420  qtophmeo  22422  cnmpt1plusg  22692  cnmpt2plusg  22693  tsmsmhm  22751  cnmpt1vsca  22799  cnmpt2vsca  22800  cnmpt1ds  23447  cnmpt2ds  23448  fsumcn  23475  cnmpopc  23533  htpyco1  23583  htpyco2  23584  phtpyco2  23595  pi1xfrf  23658  pi1xfr  23660  pi1xfrcnvlem  23661  pi1xfrcnv  23662  pi1cof  23664  pi1coghm  23666  cnmpt1ip  23851  cnmpt2ip  23852  txsconnlem  32600  txsconn  32601  cvmlift3lem6  32684  fcnre  41654  refsumcn  41659  refsum2cnlem1  41666  fprodcnlem  42241  icccncfext  42529  itgsubsticclem  42617
  Copyright terms: Public domain W3C validator