![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnf2 | Structured version Visualization version GIF version |
Description: A continuous function is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
cnf2 | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscn 23259 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) | |
2 | 1 | simprbda 498 | . 2 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
3 | 2 | 3impa 1109 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2106 ∀wral 3059 ◡ccnv 5688 “ cima 5692 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 TopOnctopon 22932 Cn ccn 23248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8867 df-top 22916 df-topon 22933 df-cn 23251 |
This theorem is referenced by: iscncl 23293 cncls2 23297 cncls 23298 cnntr 23299 cnrest2 23310 cnrest2r 23311 ptcn 23651 txdis1cn 23659 lmcn2 23673 cnmpt11 23687 cnmpt1t 23689 cnmpt12 23691 cnmpt21 23695 cnmpt2t 23697 cnmpt22 23698 cnmpt22f 23699 cnmptcom 23702 cnmptkp 23704 cnmptk1 23705 cnmpt1k 23706 cnmptkk 23707 cnmptk1p 23709 cnmptk2 23710 cnmpt2k 23712 qtopss 23739 qtopeu 23740 qtopomap 23742 qtopcmap 23743 hmeof1o2 23787 xpstopnlem1 23833 xkocnv 23838 xkohmeo 23839 qtophmeo 23841 cnmpt1plusg 24111 cnmpt2plusg 24112 tsmsmhm 24170 cnmpt1vsca 24218 cnmpt2vsca 24219 cnmpt1ds 24878 cnmpt2ds 24879 fsumcn 24908 cnmpopc 24969 htpyco1 25024 htpyco2 25025 phtpyco2 25036 pi1xfrf 25100 pi1xfr 25102 pi1xfrcnvlem 25103 pi1xfrcnv 25104 pi1cof 25106 pi1coghm 25108 cnmpt1ip 25295 cnmpt2ip 25296 txsconnlem 35225 txsconn 35226 cvmlift3lem6 35309 fcnre 44963 refsumcn 44968 refsum2cnlem1 44975 fprodcnlem 45555 icccncfext 45843 itgsubsticclem 45931 |
Copyright terms: Public domain | W3C validator |