| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnf2 | Structured version Visualization version GIF version | ||
| Description: A continuous function is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnf2 | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscn 23129 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) | |
| 2 | 1 | simprbda 498 | . 2 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
| 3 | 2 | 3impa 1109 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3045 ◡ccnv 5640 “ cima 5644 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 TopOnctopon 22804 Cn ccn 23118 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-top 22788 df-topon 22805 df-cn 23121 |
| This theorem is referenced by: iscncl 23163 cncls2 23167 cncls 23168 cnntr 23169 cnrest2 23180 cnrest2r 23181 ptcn 23521 txdis1cn 23529 lmcn2 23543 cnmpt11 23557 cnmpt1t 23559 cnmpt12 23561 cnmpt21 23565 cnmpt2t 23567 cnmpt22 23568 cnmpt22f 23569 cnmptcom 23572 cnmptkp 23574 cnmptk1 23575 cnmpt1k 23576 cnmptkk 23577 cnmptk1p 23579 cnmptk2 23580 cnmpt2k 23582 qtopss 23609 qtopeu 23610 qtopomap 23612 qtopcmap 23613 hmeof1o2 23657 xpstopnlem1 23703 xkocnv 23708 xkohmeo 23709 qtophmeo 23711 cnmpt1plusg 23981 cnmpt2plusg 23982 tsmsmhm 24040 cnmpt1vsca 24088 cnmpt2vsca 24089 cnmpt1ds 24738 cnmpt2ds 24739 fsumcn 24768 cnmpopc 24829 htpyco1 24884 htpyco2 24885 phtpyco2 24896 pi1xfrf 24960 pi1xfr 24962 pi1xfrcnvlem 24963 pi1xfrcnv 24964 pi1cof 24966 pi1coghm 24968 cnmpt1ip 25154 cnmpt2ip 25155 txsconnlem 35234 txsconn 35235 cvmlift3lem6 35318 fcnre 45026 refsumcn 45031 refsum2cnlem1 45038 fprodcnlem 45604 icccncfext 45892 itgsubsticclem 45980 |
| Copyright terms: Public domain | W3C validator |