| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnf2 | Structured version Visualization version GIF version | ||
| Description: A continuous function is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnf2 | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscn 23150 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) | |
| 2 | 1 | simprbda 498 | . 2 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
| 3 | 2 | 3impa 1109 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 ∀wral 3047 ◡ccnv 5613 “ cima 5617 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 TopOnctopon 22825 Cn ccn 23139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-top 22809 df-topon 22826 df-cn 23142 |
| This theorem is referenced by: iscncl 23184 cncls2 23188 cncls 23189 cnntr 23190 cnrest2 23201 cnrest2r 23202 ptcn 23542 txdis1cn 23550 lmcn2 23564 cnmpt11 23578 cnmpt1t 23580 cnmpt12 23582 cnmpt21 23586 cnmpt2t 23588 cnmpt22 23589 cnmpt22f 23590 cnmptcom 23593 cnmptkp 23595 cnmptk1 23596 cnmpt1k 23597 cnmptkk 23598 cnmptk1p 23600 cnmptk2 23601 cnmpt2k 23603 qtopss 23630 qtopeu 23631 qtopomap 23633 qtopcmap 23634 hmeof1o2 23678 xpstopnlem1 23724 xkocnv 23729 xkohmeo 23730 qtophmeo 23732 cnmpt1plusg 24002 cnmpt2plusg 24003 tsmsmhm 24061 cnmpt1vsca 24109 cnmpt2vsca 24110 cnmpt1ds 24758 cnmpt2ds 24759 fsumcn 24788 cnmpopc 24849 htpyco1 24904 htpyco2 24905 phtpyco2 24916 pi1xfrf 24980 pi1xfr 24982 pi1xfrcnvlem 24983 pi1xfrcnv 24984 pi1cof 24986 pi1coghm 24988 cnmpt1ip 25174 cnmpt2ip 25175 txsconnlem 35284 txsconn 35285 cvmlift3lem6 35368 fcnre 45121 refsumcn 45126 refsum2cnlem1 45133 fprodcnlem 45698 icccncfext 45984 itgsubsticclem 46072 |
| Copyright terms: Public domain | W3C validator |