Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnf2 | Structured version Visualization version GIF version |
Description: A continuous function is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
cnf2 | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscn 22294 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) | |
2 | 1 | simprbda 498 | . 2 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
3 | 2 | 3impa 1108 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 ∀wral 3063 ◡ccnv 5579 “ cima 5583 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 TopOnctopon 21967 Cn ccn 22283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-top 21951 df-topon 21968 df-cn 22286 |
This theorem is referenced by: iscncl 22328 cncls2 22332 cncls 22333 cnntr 22334 cnrest2 22345 cnrest2r 22346 ptcn 22686 txdis1cn 22694 lmcn2 22708 cnmpt11 22722 cnmpt1t 22724 cnmpt12 22726 cnmpt21 22730 cnmpt2t 22732 cnmpt22 22733 cnmpt22f 22734 cnmptcom 22737 cnmptkp 22739 cnmptk1 22740 cnmpt1k 22741 cnmptkk 22742 cnmptk1p 22744 cnmptk2 22745 cnmpt2k 22747 qtopss 22774 qtopeu 22775 qtopomap 22777 qtopcmap 22778 hmeof1o2 22822 xpstopnlem1 22868 xkocnv 22873 xkohmeo 22874 qtophmeo 22876 cnmpt1plusg 23146 cnmpt2plusg 23147 tsmsmhm 23205 cnmpt1vsca 23253 cnmpt2vsca 23254 cnmpt1ds 23911 cnmpt2ds 23912 fsumcn 23939 cnmpopc 23997 htpyco1 24047 htpyco2 24048 phtpyco2 24059 pi1xfrf 24122 pi1xfr 24124 pi1xfrcnvlem 24125 pi1xfrcnv 24126 pi1cof 24128 pi1coghm 24130 cnmpt1ip 24316 cnmpt2ip 24317 txsconnlem 33102 txsconn 33103 cvmlift3lem6 33186 fcnre 42457 refsumcn 42462 refsum2cnlem1 42469 fprodcnlem 43030 icccncfext 43318 itgsubsticclem 43406 |
Copyright terms: Public domain | W3C validator |