![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnf2 | Structured version Visualization version GIF version |
Description: A continuous function is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
cnf2 | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscn 23264 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) | |
2 | 1 | simprbda 498 | . 2 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
3 | 2 | 3impa 1110 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 ∀wral 3067 ◡ccnv 5699 “ cima 5703 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 TopOnctopon 22937 Cn ccn 23253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-top 22921 df-topon 22938 df-cn 23256 |
This theorem is referenced by: iscncl 23298 cncls2 23302 cncls 23303 cnntr 23304 cnrest2 23315 cnrest2r 23316 ptcn 23656 txdis1cn 23664 lmcn2 23678 cnmpt11 23692 cnmpt1t 23694 cnmpt12 23696 cnmpt21 23700 cnmpt2t 23702 cnmpt22 23703 cnmpt22f 23704 cnmptcom 23707 cnmptkp 23709 cnmptk1 23710 cnmpt1k 23711 cnmptkk 23712 cnmptk1p 23714 cnmptk2 23715 cnmpt2k 23717 qtopss 23744 qtopeu 23745 qtopomap 23747 qtopcmap 23748 hmeof1o2 23792 xpstopnlem1 23838 xkocnv 23843 xkohmeo 23844 qtophmeo 23846 cnmpt1plusg 24116 cnmpt2plusg 24117 tsmsmhm 24175 cnmpt1vsca 24223 cnmpt2vsca 24224 cnmpt1ds 24883 cnmpt2ds 24884 fsumcn 24913 cnmpopc 24974 htpyco1 25029 htpyco2 25030 phtpyco2 25041 pi1xfrf 25105 pi1xfr 25107 pi1xfrcnvlem 25108 pi1xfrcnv 25109 pi1cof 25111 pi1coghm 25113 cnmpt1ip 25300 cnmpt2ip 25301 txsconnlem 35208 txsconn 35209 cvmlift3lem6 35292 fcnre 44925 refsumcn 44930 refsum2cnlem1 44937 fprodcnlem 45520 icccncfext 45808 itgsubsticclem 45896 |
Copyright terms: Public domain | W3C validator |