Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hmopd | Structured version Visualization version GIF version |
Description: The difference of two Hermitian operators is Hermitian. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hmopd | ⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇 −op 𝑈) ∈ HrmOp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmopf 30593 | . . 3 ⊢ (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ) | |
2 | hmopf 30593 | . . 3 ⊢ (𝑈 ∈ HrmOp → 𝑈: ℋ⟶ ℋ) | |
3 | honegsub 30518 | . . 3 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑇 +op (-1 ·op 𝑈)) = (𝑇 −op 𝑈)) | |
4 | 1, 2, 3 | syl2an 597 | . 2 ⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇 +op (-1 ·op 𝑈)) = (𝑇 −op 𝑈)) |
5 | neg1rr 12201 | . . . 4 ⊢ -1 ∈ ℝ | |
6 | hmopm 30740 | . . . 4 ⊢ ((-1 ∈ ℝ ∧ 𝑈 ∈ HrmOp) → (-1 ·op 𝑈) ∈ HrmOp) | |
7 | 5, 6 | mpan 688 | . . 3 ⊢ (𝑈 ∈ HrmOp → (-1 ·op 𝑈) ∈ HrmOp) |
8 | hmops 30739 | . . 3 ⊢ ((𝑇 ∈ HrmOp ∧ (-1 ·op 𝑈) ∈ HrmOp) → (𝑇 +op (-1 ·op 𝑈)) ∈ HrmOp) | |
9 | 7, 8 | sylan2 594 | . 2 ⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇 +op (-1 ·op 𝑈)) ∈ HrmOp) |
10 | 4, 9 | eqeltrrd 2839 | 1 ⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇 −op 𝑈) ∈ HrmOp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ⟶wf 6487 (class class class)co 7349 ℝcr 10983 1c1 10985 -cneg 11319 ℋchba 29638 +op chos 29657 ·op chot 29658 −op chod 29659 HrmOpcho 29669 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5240 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7662 ax-inf2 9510 ax-cc 10304 ax-cnex 11040 ax-resscn 11041 ax-1cn 11042 ax-icn 11043 ax-addcl 11044 ax-addrcl 11045 ax-mulcl 11046 ax-mulrcl 11047 ax-mulcom 11048 ax-addass 11049 ax-mulass 11050 ax-distr 11051 ax-i2m1 11052 ax-1ne0 11053 ax-1rid 11054 ax-rnegex 11055 ax-rrecex 11056 ax-cnre 11057 ax-pre-lttri 11058 ax-pre-lttrn 11059 ax-pre-ltadd 11060 ax-pre-mulgt0 11061 ax-pre-sup 11062 ax-addf 11063 ax-mulf 11064 ax-hilex 29718 ax-hfvadd 29719 ax-hvcom 29720 ax-hvass 29721 ax-hv0cl 29722 ax-hvaddid 29723 ax-hfvmul 29724 ax-hvmulid 29725 ax-hvmulass 29726 ax-hvdistr1 29727 ax-hvdistr2 29728 ax-hvmul0 29729 ax-hfi 29798 ax-his1 29801 ax-his2 29802 ax-his3 29803 ax-his4 29804 ax-hcompl 29921 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-tp 4589 df-op 4591 df-uni 4864 df-int 4906 df-iun 4954 df-iin 4955 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5528 df-eprel 5534 df-po 5542 df-so 5543 df-fr 5585 df-se 5586 df-we 5587 df-xp 5636 df-rel 5637 df-cnv 5638 df-co 5639 df-dm 5640 df-rn 5641 df-res 5642 df-ima 5643 df-pred 6249 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6443 df-fun 6493 df-fn 6494 df-f 6495 df-f1 6496 df-fo 6497 df-f1o 6498 df-fv 6499 df-isom 6500 df-riota 7305 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7607 df-om 7793 df-1st 7911 df-2nd 7912 df-supp 8060 df-frecs 8179 df-wrecs 8210 df-recs 8284 df-rdg 8323 df-1o 8379 df-2o 8380 df-oadd 8383 df-omul 8384 df-er 8581 df-map 8700 df-pm 8701 df-ixp 8769 df-en 8817 df-dom 8818 df-sdom 8819 df-fin 8820 df-fsupp 9239 df-fi 9280 df-sup 9311 df-inf 9312 df-oi 9379 df-card 9808 df-acn 9811 df-pnf 11124 df-mnf 11125 df-xr 11126 df-ltxr 11127 df-le 11128 df-sub 11320 df-neg 11321 df-div 11746 df-nn 12087 df-2 12149 df-3 12150 df-4 12151 df-5 12152 df-6 12153 df-7 12154 df-8 12155 df-9 12156 df-n0 12347 df-z 12433 df-dec 12551 df-uz 12696 df-q 12802 df-rp 12844 df-xneg 12961 df-xadd 12962 df-xmul 12963 df-ioo 13196 df-ico 13198 df-icc 13199 df-fz 13353 df-fzo 13496 df-fl 13625 df-seq 13835 df-exp 13896 df-hash 14158 df-cj 14917 df-re 14918 df-im 14919 df-sqrt 15053 df-abs 15054 df-clim 15304 df-rlim 15305 df-sum 15505 df-struct 16953 df-sets 16970 df-slot 16988 df-ndx 17000 df-base 17018 df-ress 17047 df-plusg 17080 df-mulr 17081 df-starv 17082 df-sca 17083 df-vsca 17084 df-ip 17085 df-tset 17086 df-ple 17087 df-ds 17089 df-unif 17090 df-hom 17091 df-cco 17092 df-rest 17238 df-topn 17239 df-0g 17257 df-gsum 17258 df-topgen 17259 df-pt 17260 df-prds 17263 df-xrs 17318 df-qtop 17323 df-imas 17324 df-xps 17326 df-mre 17400 df-mrc 17401 df-acs 17403 df-mgm 18431 df-sgrp 18480 df-mnd 18491 df-submnd 18536 df-mulg 18805 df-cntz 19027 df-cmn 19491 df-psmet 20702 df-xmet 20703 df-met 20704 df-bl 20705 df-mopn 20706 df-fbas 20707 df-fg 20708 df-cnfld 20711 df-top 22156 df-topon 22173 df-topsp 22195 df-bases 22209 df-cld 22283 df-ntr 22284 df-cls 22285 df-nei 22362 df-cn 22491 df-cnp 22492 df-lm 22493 df-haus 22579 df-tx 22826 df-hmeo 23019 df-fil 23110 df-fm 23202 df-flim 23203 df-flf 23204 df-xms 23586 df-ms 23587 df-tms 23588 df-cfil 24532 df-cau 24533 df-cmet 24534 df-grpo 29212 df-gid 29213 df-ginv 29214 df-gdiv 29215 df-ablo 29264 df-vc 29278 df-nv 29311 df-va 29314 df-ba 29315 df-sm 29316 df-0v 29317 df-vs 29318 df-nmcv 29319 df-ims 29320 df-dip 29420 df-ssp 29441 df-ph 29532 df-cbn 29582 df-hnorm 29687 df-hba 29688 df-hvsub 29690 df-hlim 29691 df-hcau 29692 df-sh 29926 df-ch 29940 df-oc 29971 df-ch0 29972 df-shs 30027 df-pjh 30114 df-hosum 30449 df-homul 30450 df-hodif 30451 df-h0op 30467 df-hmop 30563 |
This theorem is referenced by: leop 30842 leop3 30844 leopmul2i 30854 opsqrlem4 30862 opsqrlem6 30864 |
Copyright terms: Public domain | W3C validator |