![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > haushmphlem | Structured version Visualization version GIF version |
Description: Lemma for haushmph 23517 and similar theorems. If the topological property 𝐴 is preserved under injective preimages, then property 𝐴 is preserved under homeomorphisms. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
haushmphlem.1 | ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) |
haushmphlem.2 | ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑓:∪ 𝐾–1-1→∪ 𝐽 ∧ 𝑓 ∈ (𝐾 Cn 𝐽)) → 𝐾 ∈ 𝐴) |
Ref | Expression |
---|---|
haushmphlem | ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ 𝐴 → 𝐾 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmphsym 23507 | . 2 ⊢ (𝐽 ≃ 𝐾 → 𝐾 ≃ 𝐽) | |
2 | hmph 23501 | . . 3 ⊢ (𝐾 ≃ 𝐽 ↔ (𝐾Homeo𝐽) ≠ ∅) | |
3 | n0 4346 | . . . 4 ⊢ ((𝐾Homeo𝐽) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐾Homeo𝐽)) | |
4 | simpl 482 | . . . . . . 7 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑓 ∈ (𝐾Homeo𝐽)) → 𝐽 ∈ 𝐴) | |
5 | eqid 2731 | . . . . . . . . . 10 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
6 | eqid 2731 | . . . . . . . . . 10 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
7 | 5, 6 | hmeof1o 23489 | . . . . . . . . 9 ⊢ (𝑓 ∈ (𝐾Homeo𝐽) → 𝑓:∪ 𝐾–1-1-onto→∪ 𝐽) |
8 | 7 | adantl 481 | . . . . . . . 8 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑓 ∈ (𝐾Homeo𝐽)) → 𝑓:∪ 𝐾–1-1-onto→∪ 𝐽) |
9 | f1of1 6832 | . . . . . . . 8 ⊢ (𝑓:∪ 𝐾–1-1-onto→∪ 𝐽 → 𝑓:∪ 𝐾–1-1→∪ 𝐽) | |
10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑓 ∈ (𝐾Homeo𝐽)) → 𝑓:∪ 𝐾–1-1→∪ 𝐽) |
11 | hmeocn 23485 | . . . . . . . 8 ⊢ (𝑓 ∈ (𝐾Homeo𝐽) → 𝑓 ∈ (𝐾 Cn 𝐽)) | |
12 | 11 | adantl 481 | . . . . . . 7 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑓 ∈ (𝐾Homeo𝐽)) → 𝑓 ∈ (𝐾 Cn 𝐽)) |
13 | haushmphlem.2 | . . . . . . 7 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑓:∪ 𝐾–1-1→∪ 𝐽 ∧ 𝑓 ∈ (𝐾 Cn 𝐽)) → 𝐾 ∈ 𝐴) | |
14 | 4, 10, 12, 13 | syl3anc 1370 | . . . . . 6 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑓 ∈ (𝐾Homeo𝐽)) → 𝐾 ∈ 𝐴) |
15 | 14 | expcom 413 | . . . . 5 ⊢ (𝑓 ∈ (𝐾Homeo𝐽) → (𝐽 ∈ 𝐴 → 𝐾 ∈ 𝐴)) |
16 | 15 | exlimiv 1932 | . . . 4 ⊢ (∃𝑓 𝑓 ∈ (𝐾Homeo𝐽) → (𝐽 ∈ 𝐴 → 𝐾 ∈ 𝐴)) |
17 | 3, 16 | sylbi 216 | . . 3 ⊢ ((𝐾Homeo𝐽) ≠ ∅ → (𝐽 ∈ 𝐴 → 𝐾 ∈ 𝐴)) |
18 | 2, 17 | sylbi 216 | . 2 ⊢ (𝐾 ≃ 𝐽 → (𝐽 ∈ 𝐴 → 𝐾 ∈ 𝐴)) |
19 | 1, 18 | syl 17 | 1 ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ 𝐴 → 𝐾 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∃wex 1780 ∈ wcel 2105 ≠ wne 2939 ∅c0 4322 ∪ cuni 4908 class class class wbr 5148 –1-1→wf1 6540 –1-1-onto→wf1o 6542 (class class class)co 7412 Topctop 22616 Cn ccn 22949 Homeochmeo 23478 ≃ chmph 23479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-1o 8470 df-map 8826 df-top 22617 df-topon 22634 df-cn 22952 df-hmeo 23480 df-hmph 23481 |
This theorem is referenced by: t0hmph 23515 t1hmph 23516 haushmph 23517 |
Copyright terms: Public domain | W3C validator |