MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  haushmphlem Structured version   Visualization version   GIF version

Theorem haushmphlem 23725
Description: Lemma for haushmph 23730 and similar theorems. If the topological property 𝐴 is preserved under injective preimages, then property 𝐴 is preserved under homeomorphisms. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypotheses
Ref Expression
haushmphlem.1 (𝐽𝐴𝐽 ∈ Top)
haushmphlem.2 ((𝐽𝐴𝑓: 𝐾1-1 𝐽𝑓 ∈ (𝐾 Cn 𝐽)) → 𝐾𝐴)
Assertion
Ref Expression
haushmphlem (𝐽𝐾 → (𝐽𝐴𝐾𝐴))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐽   𝑓,𝐾

Proof of Theorem haushmphlem
StepHypRef Expression
1 hmphsym 23720 . 2 (𝐽𝐾𝐾𝐽)
2 hmph 23714 . . 3 (𝐾𝐽 ↔ (𝐾Homeo𝐽) ≠ ∅)
3 n0 4328 . . . 4 ((𝐾Homeo𝐽) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐾Homeo𝐽))
4 simpl 482 . . . . . . 7 ((𝐽𝐴𝑓 ∈ (𝐾Homeo𝐽)) → 𝐽𝐴)
5 eqid 2735 . . . . . . . . . 10 𝐾 = 𝐾
6 eqid 2735 . . . . . . . . . 10 𝐽 = 𝐽
75, 6hmeof1o 23702 . . . . . . . . 9 (𝑓 ∈ (𝐾Homeo𝐽) → 𝑓: 𝐾1-1-onto 𝐽)
87adantl 481 . . . . . . . 8 ((𝐽𝐴𝑓 ∈ (𝐾Homeo𝐽)) → 𝑓: 𝐾1-1-onto 𝐽)
9 f1of1 6817 . . . . . . . 8 (𝑓: 𝐾1-1-onto 𝐽𝑓: 𝐾1-1 𝐽)
108, 9syl 17 . . . . . . 7 ((𝐽𝐴𝑓 ∈ (𝐾Homeo𝐽)) → 𝑓: 𝐾1-1 𝐽)
11 hmeocn 23698 . . . . . . . 8 (𝑓 ∈ (𝐾Homeo𝐽) → 𝑓 ∈ (𝐾 Cn 𝐽))
1211adantl 481 . . . . . . 7 ((𝐽𝐴𝑓 ∈ (𝐾Homeo𝐽)) → 𝑓 ∈ (𝐾 Cn 𝐽))
13 haushmphlem.2 . . . . . . 7 ((𝐽𝐴𝑓: 𝐾1-1 𝐽𝑓 ∈ (𝐾 Cn 𝐽)) → 𝐾𝐴)
144, 10, 12, 13syl3anc 1373 . . . . . 6 ((𝐽𝐴𝑓 ∈ (𝐾Homeo𝐽)) → 𝐾𝐴)
1514expcom 413 . . . . 5 (𝑓 ∈ (𝐾Homeo𝐽) → (𝐽𝐴𝐾𝐴))
1615exlimiv 1930 . . . 4 (∃𝑓 𝑓 ∈ (𝐾Homeo𝐽) → (𝐽𝐴𝐾𝐴))
173, 16sylbi 217 . . 3 ((𝐾Homeo𝐽) ≠ ∅ → (𝐽𝐴𝐾𝐴))
182, 17sylbi 217 . 2 (𝐾𝐽 → (𝐽𝐴𝐾𝐴))
191, 18syl 17 1 (𝐽𝐾 → (𝐽𝐴𝐾𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wex 1779  wcel 2108  wne 2932  c0 4308   cuni 4883   class class class wbr 5119  1-1wf1 6528  1-1-ontowf1o 6530  (class class class)co 7405  Topctop 22831   Cn ccn 23162  Homeochmeo 23691  chmph 23692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-1o 8480  df-map 8842  df-top 22832  df-topon 22849  df-cn 23165  df-hmeo 23693  df-hmph 23694
This theorem is referenced by:  t0hmph  23728  t1hmph  23729  haushmph  23730
  Copyright terms: Public domain W3C validator