MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  haushmphlem Structured version   Visualization version   GIF version

Theorem haushmphlem 22938
Description: Lemma for haushmph 22943 and similar theorems. If the topological property 𝐴 is preserved under injective preimages, then property 𝐴 is preserved under homeomorphisms. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypotheses
Ref Expression
haushmphlem.1 (𝐽𝐴𝐽 ∈ Top)
haushmphlem.2 ((𝐽𝐴𝑓: 𝐾1-1 𝐽𝑓 ∈ (𝐾 Cn 𝐽)) → 𝐾𝐴)
Assertion
Ref Expression
haushmphlem (𝐽𝐾 → (𝐽𝐴𝐾𝐴))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐽   𝑓,𝐾

Proof of Theorem haushmphlem
StepHypRef Expression
1 hmphsym 22933 . 2 (𝐽𝐾𝐾𝐽)
2 hmph 22927 . . 3 (𝐾𝐽 ↔ (𝐾Homeo𝐽) ≠ ∅)
3 n0 4280 . . . 4 ((𝐾Homeo𝐽) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐾Homeo𝐽))
4 simpl 483 . . . . . . 7 ((𝐽𝐴𝑓 ∈ (𝐾Homeo𝐽)) → 𝐽𝐴)
5 eqid 2738 . . . . . . . . . 10 𝐾 = 𝐾
6 eqid 2738 . . . . . . . . . 10 𝐽 = 𝐽
75, 6hmeof1o 22915 . . . . . . . . 9 (𝑓 ∈ (𝐾Homeo𝐽) → 𝑓: 𝐾1-1-onto 𝐽)
87adantl 482 . . . . . . . 8 ((𝐽𝐴𝑓 ∈ (𝐾Homeo𝐽)) → 𝑓: 𝐾1-1-onto 𝐽)
9 f1of1 6715 . . . . . . . 8 (𝑓: 𝐾1-1-onto 𝐽𝑓: 𝐾1-1 𝐽)
108, 9syl 17 . . . . . . 7 ((𝐽𝐴𝑓 ∈ (𝐾Homeo𝐽)) → 𝑓: 𝐾1-1 𝐽)
11 hmeocn 22911 . . . . . . . 8 (𝑓 ∈ (𝐾Homeo𝐽) → 𝑓 ∈ (𝐾 Cn 𝐽))
1211adantl 482 . . . . . . 7 ((𝐽𝐴𝑓 ∈ (𝐾Homeo𝐽)) → 𝑓 ∈ (𝐾 Cn 𝐽))
13 haushmphlem.2 . . . . . . 7 ((𝐽𝐴𝑓: 𝐾1-1 𝐽𝑓 ∈ (𝐾 Cn 𝐽)) → 𝐾𝐴)
144, 10, 12, 13syl3anc 1370 . . . . . 6 ((𝐽𝐴𝑓 ∈ (𝐾Homeo𝐽)) → 𝐾𝐴)
1514expcom 414 . . . . 5 (𝑓 ∈ (𝐾Homeo𝐽) → (𝐽𝐴𝐾𝐴))
1615exlimiv 1933 . . . 4 (∃𝑓 𝑓 ∈ (𝐾Homeo𝐽) → (𝐽𝐴𝐾𝐴))
173, 16sylbi 216 . . 3 ((𝐾Homeo𝐽) ≠ ∅ → (𝐽𝐴𝐾𝐴))
182, 17sylbi 216 . 2 (𝐾𝐽 → (𝐽𝐴𝐾𝐴))
191, 18syl 17 1 (𝐽𝐾 → (𝐽𝐴𝐾𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wex 1782  wcel 2106  wne 2943  c0 4256   cuni 4839   class class class wbr 5074  1-1wf1 6430  1-1-ontowf1o 6432  (class class class)co 7275  Topctop 22042   Cn ccn 22375  Homeochmeo 22904  chmph 22905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-1o 8297  df-map 8617  df-top 22043  df-topon 22060  df-cn 22378  df-hmeo 22906  df-hmph 22907
This theorem is referenced by:  t0hmph  22941  t1hmph  22942  haushmph  22943
  Copyright terms: Public domain W3C validator