| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > haushmphlem | Structured version Visualization version GIF version | ||
| Description: Lemma for haushmph 23686 and similar theorems. If the topological property 𝐴 is preserved under injective preimages, then property 𝐴 is preserved under homeomorphisms. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| haushmphlem.1 | ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) |
| haushmphlem.2 | ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑓:∪ 𝐾–1-1→∪ 𝐽 ∧ 𝑓 ∈ (𝐾 Cn 𝐽)) → 𝐾 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| haushmphlem | ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ 𝐴 → 𝐾 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmphsym 23676 | . 2 ⊢ (𝐽 ≃ 𝐾 → 𝐾 ≃ 𝐽) | |
| 2 | hmph 23670 | . . 3 ⊢ (𝐾 ≃ 𝐽 ↔ (𝐾Homeo𝐽) ≠ ∅) | |
| 3 | n0 4319 | . . . 4 ⊢ ((𝐾Homeo𝐽) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐾Homeo𝐽)) | |
| 4 | simpl 482 | . . . . . . 7 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑓 ∈ (𝐾Homeo𝐽)) → 𝐽 ∈ 𝐴) | |
| 5 | eqid 2730 | . . . . . . . . . 10 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 6 | eqid 2730 | . . . . . . . . . 10 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 7 | 5, 6 | hmeof1o 23658 | . . . . . . . . 9 ⊢ (𝑓 ∈ (𝐾Homeo𝐽) → 𝑓:∪ 𝐾–1-1-onto→∪ 𝐽) |
| 8 | 7 | adantl 481 | . . . . . . . 8 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑓 ∈ (𝐾Homeo𝐽)) → 𝑓:∪ 𝐾–1-1-onto→∪ 𝐽) |
| 9 | f1of1 6802 | . . . . . . . 8 ⊢ (𝑓:∪ 𝐾–1-1-onto→∪ 𝐽 → 𝑓:∪ 𝐾–1-1→∪ 𝐽) | |
| 10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑓 ∈ (𝐾Homeo𝐽)) → 𝑓:∪ 𝐾–1-1→∪ 𝐽) |
| 11 | hmeocn 23654 | . . . . . . . 8 ⊢ (𝑓 ∈ (𝐾Homeo𝐽) → 𝑓 ∈ (𝐾 Cn 𝐽)) | |
| 12 | 11 | adantl 481 | . . . . . . 7 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑓 ∈ (𝐾Homeo𝐽)) → 𝑓 ∈ (𝐾 Cn 𝐽)) |
| 13 | haushmphlem.2 | . . . . . . 7 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑓:∪ 𝐾–1-1→∪ 𝐽 ∧ 𝑓 ∈ (𝐾 Cn 𝐽)) → 𝐾 ∈ 𝐴) | |
| 14 | 4, 10, 12, 13 | syl3anc 1373 | . . . . . 6 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑓 ∈ (𝐾Homeo𝐽)) → 𝐾 ∈ 𝐴) |
| 15 | 14 | expcom 413 | . . . . 5 ⊢ (𝑓 ∈ (𝐾Homeo𝐽) → (𝐽 ∈ 𝐴 → 𝐾 ∈ 𝐴)) |
| 16 | 15 | exlimiv 1930 | . . . 4 ⊢ (∃𝑓 𝑓 ∈ (𝐾Homeo𝐽) → (𝐽 ∈ 𝐴 → 𝐾 ∈ 𝐴)) |
| 17 | 3, 16 | sylbi 217 | . . 3 ⊢ ((𝐾Homeo𝐽) ≠ ∅ → (𝐽 ∈ 𝐴 → 𝐾 ∈ 𝐴)) |
| 18 | 2, 17 | sylbi 217 | . 2 ⊢ (𝐾 ≃ 𝐽 → (𝐽 ∈ 𝐴 → 𝐾 ∈ 𝐴)) |
| 19 | 1, 18 | syl 17 | 1 ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ 𝐴 → 𝐾 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∃wex 1779 ∈ wcel 2109 ≠ wne 2926 ∅c0 4299 ∪ cuni 4874 class class class wbr 5110 –1-1→wf1 6511 –1-1-onto→wf1o 6513 (class class class)co 7390 Topctop 22787 Cn ccn 23118 Homeochmeo 23647 ≃ chmph 23648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-1o 8437 df-map 8804 df-top 22788 df-topon 22805 df-cn 23121 df-hmeo 23649 df-hmph 23650 |
| This theorem is referenced by: t0hmph 23684 t1hmph 23685 haushmph 23686 |
| Copyright terms: Public domain | W3C validator |