| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > haushmphlem | Structured version Visualization version GIF version | ||
| Description: Lemma for haushmph 23677 and similar theorems. If the topological property 𝐴 is preserved under injective preimages, then property 𝐴 is preserved under homeomorphisms. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| haushmphlem.1 | ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) |
| haushmphlem.2 | ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑓:∪ 𝐾–1-1→∪ 𝐽 ∧ 𝑓 ∈ (𝐾 Cn 𝐽)) → 𝐾 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| haushmphlem | ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ 𝐴 → 𝐾 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmphsym 23667 | . 2 ⊢ (𝐽 ≃ 𝐾 → 𝐾 ≃ 𝐽) | |
| 2 | hmph 23661 | . . 3 ⊢ (𝐾 ≃ 𝐽 ↔ (𝐾Homeo𝐽) ≠ ∅) | |
| 3 | n0 4304 | . . . 4 ⊢ ((𝐾Homeo𝐽) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐾Homeo𝐽)) | |
| 4 | simpl 482 | . . . . . . 7 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑓 ∈ (𝐾Homeo𝐽)) → 𝐽 ∈ 𝐴) | |
| 5 | eqid 2729 | . . . . . . . . . 10 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 6 | eqid 2729 | . . . . . . . . . 10 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 7 | 5, 6 | hmeof1o 23649 | . . . . . . . . 9 ⊢ (𝑓 ∈ (𝐾Homeo𝐽) → 𝑓:∪ 𝐾–1-1-onto→∪ 𝐽) |
| 8 | 7 | adantl 481 | . . . . . . . 8 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑓 ∈ (𝐾Homeo𝐽)) → 𝑓:∪ 𝐾–1-1-onto→∪ 𝐽) |
| 9 | f1of1 6763 | . . . . . . . 8 ⊢ (𝑓:∪ 𝐾–1-1-onto→∪ 𝐽 → 𝑓:∪ 𝐾–1-1→∪ 𝐽) | |
| 10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑓 ∈ (𝐾Homeo𝐽)) → 𝑓:∪ 𝐾–1-1→∪ 𝐽) |
| 11 | hmeocn 23645 | . . . . . . . 8 ⊢ (𝑓 ∈ (𝐾Homeo𝐽) → 𝑓 ∈ (𝐾 Cn 𝐽)) | |
| 12 | 11 | adantl 481 | . . . . . . 7 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑓 ∈ (𝐾Homeo𝐽)) → 𝑓 ∈ (𝐾 Cn 𝐽)) |
| 13 | haushmphlem.2 | . . . . . . 7 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑓:∪ 𝐾–1-1→∪ 𝐽 ∧ 𝑓 ∈ (𝐾 Cn 𝐽)) → 𝐾 ∈ 𝐴) | |
| 14 | 4, 10, 12, 13 | syl3anc 1373 | . . . . . 6 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑓 ∈ (𝐾Homeo𝐽)) → 𝐾 ∈ 𝐴) |
| 15 | 14 | expcom 413 | . . . . 5 ⊢ (𝑓 ∈ (𝐾Homeo𝐽) → (𝐽 ∈ 𝐴 → 𝐾 ∈ 𝐴)) |
| 16 | 15 | exlimiv 1930 | . . . 4 ⊢ (∃𝑓 𝑓 ∈ (𝐾Homeo𝐽) → (𝐽 ∈ 𝐴 → 𝐾 ∈ 𝐴)) |
| 17 | 3, 16 | sylbi 217 | . . 3 ⊢ ((𝐾Homeo𝐽) ≠ ∅ → (𝐽 ∈ 𝐴 → 𝐾 ∈ 𝐴)) |
| 18 | 2, 17 | sylbi 217 | . 2 ⊢ (𝐾 ≃ 𝐽 → (𝐽 ∈ 𝐴 → 𝐾 ∈ 𝐴)) |
| 19 | 1, 18 | syl 17 | 1 ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ 𝐴 → 𝐾 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∅c0 4284 ∪ cuni 4858 class class class wbr 5092 –1-1→wf1 6479 –1-1-onto→wf1o 6481 (class class class)co 7349 Topctop 22778 Cn ccn 23109 Homeochmeo 23638 ≃ chmph 23639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-1o 8388 df-map 8755 df-top 22779 df-topon 22796 df-cn 23112 df-hmeo 23640 df-hmph 23641 |
| This theorem is referenced by: t0hmph 23675 t1hmph 23676 haushmph 23677 |
| Copyright terms: Public domain | W3C validator |