MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  haushmphlem Structured version   Visualization version   GIF version

Theorem haushmphlem 23681
Description: Lemma for haushmph 23686 and similar theorems. If the topological property 𝐴 is preserved under injective preimages, then property 𝐴 is preserved under homeomorphisms. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypotheses
Ref Expression
haushmphlem.1 (𝐽𝐴𝐽 ∈ Top)
haushmphlem.2 ((𝐽𝐴𝑓: 𝐾1-1 𝐽𝑓 ∈ (𝐾 Cn 𝐽)) → 𝐾𝐴)
Assertion
Ref Expression
haushmphlem (𝐽𝐾 → (𝐽𝐴𝐾𝐴))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐽   𝑓,𝐾

Proof of Theorem haushmphlem
StepHypRef Expression
1 hmphsym 23676 . 2 (𝐽𝐾𝐾𝐽)
2 hmph 23670 . . 3 (𝐾𝐽 ↔ (𝐾Homeo𝐽) ≠ ∅)
3 n0 4319 . . . 4 ((𝐾Homeo𝐽) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐾Homeo𝐽))
4 simpl 482 . . . . . . 7 ((𝐽𝐴𝑓 ∈ (𝐾Homeo𝐽)) → 𝐽𝐴)
5 eqid 2730 . . . . . . . . . 10 𝐾 = 𝐾
6 eqid 2730 . . . . . . . . . 10 𝐽 = 𝐽
75, 6hmeof1o 23658 . . . . . . . . 9 (𝑓 ∈ (𝐾Homeo𝐽) → 𝑓: 𝐾1-1-onto 𝐽)
87adantl 481 . . . . . . . 8 ((𝐽𝐴𝑓 ∈ (𝐾Homeo𝐽)) → 𝑓: 𝐾1-1-onto 𝐽)
9 f1of1 6802 . . . . . . . 8 (𝑓: 𝐾1-1-onto 𝐽𝑓: 𝐾1-1 𝐽)
108, 9syl 17 . . . . . . 7 ((𝐽𝐴𝑓 ∈ (𝐾Homeo𝐽)) → 𝑓: 𝐾1-1 𝐽)
11 hmeocn 23654 . . . . . . . 8 (𝑓 ∈ (𝐾Homeo𝐽) → 𝑓 ∈ (𝐾 Cn 𝐽))
1211adantl 481 . . . . . . 7 ((𝐽𝐴𝑓 ∈ (𝐾Homeo𝐽)) → 𝑓 ∈ (𝐾 Cn 𝐽))
13 haushmphlem.2 . . . . . . 7 ((𝐽𝐴𝑓: 𝐾1-1 𝐽𝑓 ∈ (𝐾 Cn 𝐽)) → 𝐾𝐴)
144, 10, 12, 13syl3anc 1373 . . . . . 6 ((𝐽𝐴𝑓 ∈ (𝐾Homeo𝐽)) → 𝐾𝐴)
1514expcom 413 . . . . 5 (𝑓 ∈ (𝐾Homeo𝐽) → (𝐽𝐴𝐾𝐴))
1615exlimiv 1930 . . . 4 (∃𝑓 𝑓 ∈ (𝐾Homeo𝐽) → (𝐽𝐴𝐾𝐴))
173, 16sylbi 217 . . 3 ((𝐾Homeo𝐽) ≠ ∅ → (𝐽𝐴𝐾𝐴))
182, 17sylbi 217 . 2 (𝐾𝐽 → (𝐽𝐴𝐾𝐴))
191, 18syl 17 1 (𝐽𝐾 → (𝐽𝐴𝐾𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wex 1779  wcel 2109  wne 2926  c0 4299   cuni 4874   class class class wbr 5110  1-1wf1 6511  1-1-ontowf1o 6513  (class class class)co 7390  Topctop 22787   Cn ccn 23118  Homeochmeo 23647  chmph 23648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-1o 8437  df-map 8804  df-top 22788  df-topon 22805  df-cn 23121  df-hmeo 23649  df-hmph 23650
This theorem is referenced by:  t0hmph  23684  t1hmph  23685  haushmph  23686
  Copyright terms: Public domain W3C validator