| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > connhmph | Structured version Visualization version GIF version | ||
| Description: Connectedness is a topological property. (Contributed by Jeff Hankins, 3-Jul-2009.) |
| Ref | Expression |
|---|---|
| connhmph | ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Conn → 𝐾 ∈ Conn)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmph 23689 | . 2 ⊢ (𝐽 ≃ 𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅) | |
| 2 | n0 4303 | . . 3 ⊢ ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾)) | |
| 3 | eqid 2731 | . . . . . . 7 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | eqid 2731 | . . . . . . 7 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 5 | 3, 4 | hmeof1o 23677 | . . . . . 6 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓:∪ 𝐽–1-1-onto→∪ 𝐾) |
| 6 | f1ofo 6770 | . . . . . 6 ⊢ (𝑓:∪ 𝐽–1-1-onto→∪ 𝐾 → 𝑓:∪ 𝐽–onto→∪ 𝐾) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓:∪ 𝐽–onto→∪ 𝐾) |
| 8 | hmeocn 23673 | . . . . 5 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓 ∈ (𝐽 Cn 𝐾)) | |
| 9 | 4 | cnconn 23335 | . . . . . . 7 ⊢ ((𝐽 ∈ Conn ∧ 𝑓:∪ 𝐽–onto→∪ 𝐾 ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Conn) |
| 10 | 9 | 3expb 1120 | . . . . . 6 ⊢ ((𝐽 ∈ Conn ∧ (𝑓:∪ 𝐽–onto→∪ 𝐾 ∧ 𝑓 ∈ (𝐽 Cn 𝐾))) → 𝐾 ∈ Conn) |
| 11 | 10 | expcom 413 | . . . . 5 ⊢ ((𝑓:∪ 𝐽–onto→∪ 𝐾 ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → (𝐽 ∈ Conn → 𝐾 ∈ Conn)) |
| 12 | 7, 8, 11 | syl2anc 584 | . . . 4 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Conn → 𝐾 ∈ Conn)) |
| 13 | 12 | exlimiv 1931 | . . 3 ⊢ (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Conn → 𝐾 ∈ Conn)) |
| 14 | 2, 13 | sylbi 217 | . 2 ⊢ ((𝐽Homeo𝐾) ≠ ∅ → (𝐽 ∈ Conn → 𝐾 ∈ Conn)) |
| 15 | 1, 14 | sylbi 217 | 1 ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Conn → 𝐾 ∈ Conn)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∅c0 4283 ∪ cuni 4859 class class class wbr 5091 –onto→wfo 6479 –1-1-onto→wf1o 6480 (class class class)co 7346 Cn ccn 23137 Conncconn 23324 Homeochmeo 23666 ≃ chmph 23667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-1o 8385 df-map 8752 df-top 22807 df-topon 22824 df-cld 22932 df-cn 23140 df-conn 23325 df-hmeo 23668 df-hmph 23669 |
| This theorem is referenced by: xrconn 24872 |
| Copyright terms: Public domain | W3C validator |