MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  connhmph Structured version   Visualization version   GIF version

Theorem connhmph 23514
Description: Connectedness is a topological property. (Contributed by Jeff Hankins, 3-Jul-2009.)
Assertion
Ref Expression
connhmph (𝐽𝐾 → (𝐽 ∈ Conn → 𝐾 ∈ Conn))

Proof of Theorem connhmph
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 hmph 23501 . 2 (𝐽𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅)
2 n0 4346 . . 3 ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾))
3 eqid 2731 . . . . . . 7 𝐽 = 𝐽
4 eqid 2731 . . . . . . 7 𝐾 = 𝐾
53, 4hmeof1o 23489 . . . . . 6 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓: 𝐽1-1-onto 𝐾)
6 f1ofo 6840 . . . . . 6 (𝑓: 𝐽1-1-onto 𝐾𝑓: 𝐽onto 𝐾)
75, 6syl 17 . . . . 5 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓: 𝐽onto 𝐾)
8 hmeocn 23485 . . . . 5 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓 ∈ (𝐽 Cn 𝐾))
94cnconn 23147 . . . . . . 7 ((𝐽 ∈ Conn ∧ 𝑓: 𝐽onto 𝐾𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Conn)
1093expb 1119 . . . . . 6 ((𝐽 ∈ Conn ∧ (𝑓: 𝐽onto 𝐾𝑓 ∈ (𝐽 Cn 𝐾))) → 𝐾 ∈ Conn)
1110expcom 413 . . . . 5 ((𝑓: 𝐽onto 𝐾𝑓 ∈ (𝐽 Cn 𝐾)) → (𝐽 ∈ Conn → 𝐾 ∈ Conn))
127, 8, 11syl2anc 583 . . . 4 (𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Conn → 𝐾 ∈ Conn))
1312exlimiv 1932 . . 3 (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Conn → 𝐾 ∈ Conn))
142, 13sylbi 216 . 2 ((𝐽Homeo𝐾) ≠ ∅ → (𝐽 ∈ Conn → 𝐾 ∈ Conn))
151, 14sylbi 216 1 (𝐽𝐾 → (𝐽 ∈ Conn → 𝐾 ∈ Conn))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1780  wcel 2105  wne 2939  c0 4322   cuni 4908   class class class wbr 5148  ontowfo 6541  1-1-ontowf1o 6542  (class class class)co 7412   Cn ccn 22949  Conncconn 23136  Homeochmeo 23478  chmph 23479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-1o 8470  df-map 8826  df-top 22617  df-topon 22634  df-cld 22744  df-cn 22952  df-conn 23137  df-hmeo 23480  df-hmph 23481
This theorem is referenced by:  xrconn  24695
  Copyright terms: Public domain W3C validator