MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  connhmph Structured version   Visualization version   GIF version

Theorem connhmph 23818
Description: Connectedness is a topological property. (Contributed by Jeff Hankins, 3-Jul-2009.)
Assertion
Ref Expression
connhmph (𝐽𝐾 → (𝐽 ∈ Conn → 𝐾 ∈ Conn))

Proof of Theorem connhmph
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 hmph 23805 . 2 (𝐽𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅)
2 n0 4376 . . 3 ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾))
3 eqid 2740 . . . . . . 7 𝐽 = 𝐽
4 eqid 2740 . . . . . . 7 𝐾 = 𝐾
53, 4hmeof1o 23793 . . . . . 6 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓: 𝐽1-1-onto 𝐾)
6 f1ofo 6869 . . . . . 6 (𝑓: 𝐽1-1-onto 𝐾𝑓: 𝐽onto 𝐾)
75, 6syl 17 . . . . 5 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓: 𝐽onto 𝐾)
8 hmeocn 23789 . . . . 5 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓 ∈ (𝐽 Cn 𝐾))
94cnconn 23451 . . . . . . 7 ((𝐽 ∈ Conn ∧ 𝑓: 𝐽onto 𝐾𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Conn)
1093expb 1120 . . . . . 6 ((𝐽 ∈ Conn ∧ (𝑓: 𝐽onto 𝐾𝑓 ∈ (𝐽 Cn 𝐾))) → 𝐾 ∈ Conn)
1110expcom 413 . . . . 5 ((𝑓: 𝐽onto 𝐾𝑓 ∈ (𝐽 Cn 𝐾)) → (𝐽 ∈ Conn → 𝐾 ∈ Conn))
127, 8, 11syl2anc 583 . . . 4 (𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Conn → 𝐾 ∈ Conn))
1312exlimiv 1929 . . 3 (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Conn → 𝐾 ∈ Conn))
142, 13sylbi 217 . 2 ((𝐽Homeo𝐾) ≠ ∅ → (𝐽 ∈ Conn → 𝐾 ∈ Conn))
151, 14sylbi 217 1 (𝐽𝐾 → (𝐽 ∈ Conn → 𝐾 ∈ Conn))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1777  wcel 2108  wne 2946  c0 4352   cuni 4931   class class class wbr 5166  ontowfo 6571  1-1-ontowf1o 6572  (class class class)co 7448   Cn ccn 23253  Conncconn 23440  Homeochmeo 23782  chmph 23783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-1o 8522  df-map 8886  df-top 22921  df-topon 22938  df-cld 23048  df-cn 23256  df-conn 23441  df-hmeo 23784  df-hmph 23785
This theorem is referenced by:  xrconn  24999
  Copyright terms: Public domain W3C validator