| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > connhmph | Structured version Visualization version GIF version | ||
| Description: Connectedness is a topological property. (Contributed by Jeff Hankins, 3-Jul-2009.) |
| Ref | Expression |
|---|---|
| connhmph | ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Conn → 𝐾 ∈ Conn)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmph 23692 | . 2 ⊢ (𝐽 ≃ 𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅) | |
| 2 | n0 4302 | . . 3 ⊢ ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾)) | |
| 3 | eqid 2733 | . . . . . . 7 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | eqid 2733 | . . . . . . 7 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 5 | 3, 4 | hmeof1o 23680 | . . . . . 6 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓:∪ 𝐽–1-1-onto→∪ 𝐾) |
| 6 | f1ofo 6775 | . . . . . 6 ⊢ (𝑓:∪ 𝐽–1-1-onto→∪ 𝐾 → 𝑓:∪ 𝐽–onto→∪ 𝐾) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓:∪ 𝐽–onto→∪ 𝐾) |
| 8 | hmeocn 23676 | . . . . 5 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓 ∈ (𝐽 Cn 𝐾)) | |
| 9 | 4 | cnconn 23338 | . . . . . . 7 ⊢ ((𝐽 ∈ Conn ∧ 𝑓:∪ 𝐽–onto→∪ 𝐾 ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Conn) |
| 10 | 9 | 3expb 1120 | . . . . . 6 ⊢ ((𝐽 ∈ Conn ∧ (𝑓:∪ 𝐽–onto→∪ 𝐾 ∧ 𝑓 ∈ (𝐽 Cn 𝐾))) → 𝐾 ∈ Conn) |
| 11 | 10 | expcom 413 | . . . . 5 ⊢ ((𝑓:∪ 𝐽–onto→∪ 𝐾 ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → (𝐽 ∈ Conn → 𝐾 ∈ Conn)) |
| 12 | 7, 8, 11 | syl2anc 584 | . . . 4 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Conn → 𝐾 ∈ Conn)) |
| 13 | 12 | exlimiv 1931 | . . 3 ⊢ (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Conn → 𝐾 ∈ Conn)) |
| 14 | 2, 13 | sylbi 217 | . 2 ⊢ ((𝐽Homeo𝐾) ≠ ∅ → (𝐽 ∈ Conn → 𝐾 ∈ Conn)) |
| 15 | 1, 14 | sylbi 217 | 1 ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Conn → 𝐾 ∈ Conn)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2113 ≠ wne 2929 ∅c0 4282 ∪ cuni 4858 class class class wbr 5093 –onto→wfo 6484 –1-1-onto→wf1o 6485 (class class class)co 7352 Cn ccn 23140 Conncconn 23327 Homeochmeo 23669 ≃ chmph 23670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-1o 8391 df-map 8758 df-top 22810 df-topon 22827 df-cld 22935 df-cn 23143 df-conn 23328 df-hmeo 23671 df-hmph 23672 |
| This theorem is referenced by: xrconn 24875 |
| Copyright terms: Public domain | W3C validator |