![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > connhmph | Structured version Visualization version GIF version |
Description: Connectedness is a topological property. (Contributed by Jeff Hankins, 3-Jul-2009.) |
Ref | Expression |
---|---|
connhmph | ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Conn → 𝐾 ∈ Conn)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmph 21957 | . 2 ⊢ (𝐽 ≃ 𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅) | |
2 | n0 4162 | . . 3 ⊢ ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾)) | |
3 | eqid 2825 | . . . . . . 7 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
4 | eqid 2825 | . . . . . . 7 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
5 | 3, 4 | hmeof1o 21945 | . . . . . 6 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓:∪ 𝐽–1-1-onto→∪ 𝐾) |
6 | f1ofo 6389 | . . . . . 6 ⊢ (𝑓:∪ 𝐽–1-1-onto→∪ 𝐾 → 𝑓:∪ 𝐽–onto→∪ 𝐾) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓:∪ 𝐽–onto→∪ 𝐾) |
8 | hmeocn 21941 | . . . . 5 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓 ∈ (𝐽 Cn 𝐾)) | |
9 | 4 | cnconn 21603 | . . . . . . 7 ⊢ ((𝐽 ∈ Conn ∧ 𝑓:∪ 𝐽–onto→∪ 𝐾 ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Conn) |
10 | 9 | 3expb 1153 | . . . . . 6 ⊢ ((𝐽 ∈ Conn ∧ (𝑓:∪ 𝐽–onto→∪ 𝐾 ∧ 𝑓 ∈ (𝐽 Cn 𝐾))) → 𝐾 ∈ Conn) |
11 | 10 | expcom 404 | . . . . 5 ⊢ ((𝑓:∪ 𝐽–onto→∪ 𝐾 ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → (𝐽 ∈ Conn → 𝐾 ∈ Conn)) |
12 | 7, 8, 11 | syl2anc 579 | . . . 4 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Conn → 𝐾 ∈ Conn)) |
13 | 12 | exlimiv 2029 | . . 3 ⊢ (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Conn → 𝐾 ∈ Conn)) |
14 | 2, 13 | sylbi 209 | . 2 ⊢ ((𝐽Homeo𝐾) ≠ ∅ → (𝐽 ∈ Conn → 𝐾 ∈ Conn)) |
15 | 1, 14 | sylbi 209 | 1 ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Conn → 𝐾 ∈ Conn)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∃wex 1878 ∈ wcel 2164 ≠ wne 2999 ∅c0 4146 ∪ cuni 4660 class class class wbr 4875 –onto→wfo 6125 –1-1-onto→wf1o 6126 (class class class)co 6910 Cn ccn 21406 Conncconn 21592 Homeochmeo 21934 ≃ chmph 21935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-1st 7433 df-2nd 7434 df-1o 7831 df-map 8129 df-top 21076 df-topon 21093 df-cld 21201 df-cn 21409 df-conn 21593 df-hmeo 21936 df-hmph 21937 |
This theorem is referenced by: xrconn 23125 |
Copyright terms: Public domain | W3C validator |