MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmphen2 Structured version   Visualization version   GIF version

Theorem hmphen2 22701
Description: Homeomorphisms preserve the cardinality of the underlying sets. (Contributed by FL, 17-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
Hypotheses
Ref Expression
cmphaushmeo.1 𝑋 = 𝐽
cmphaushmeo.2 𝑌 = 𝐾
Assertion
Ref Expression
hmphen2 (𝐽𝐾𝑋𝑌)

Proof of Theorem hmphen2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 hmph 22678 . 2 (𝐽𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅)
2 n0 4266 . . 3 ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾))
3 cmphaushmeo.1 . . . . . 6 𝑋 = 𝐽
4 cmphaushmeo.2 . . . . . 6 𝑌 = 𝐾
53, 4hmeof1o 22666 . . . . 5 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓:𝑋1-1-onto𝑌)
6 f1oen3g 8649 . . . . 5 ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑓:𝑋1-1-onto𝑌) → 𝑋𝑌)
75, 6mpdan 687 . . . 4 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑋𝑌)
87exlimiv 1938 . . 3 (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → 𝑋𝑌)
92, 8sylbi 220 . 2 ((𝐽Homeo𝐾) ≠ ∅ → 𝑋𝑌)
101, 9sylbi 220 1 (𝐽𝐾𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wex 1787  wcel 2110  wne 2940  c0 4242   cuni 4824   class class class wbr 5058  1-1-ontowf1o 6384  (class class class)co 7218  cen 8628  Homeochmeo 22655  chmph 22656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5197  ax-nul 5204  ax-pow 5263  ax-pr 5327  ax-un 7528
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3415  df-sbc 3700  df-csb 3817  df-dif 3874  df-un 3876  df-in 3878  df-ss 3888  df-nul 4243  df-if 4445  df-pw 4520  df-sn 4547  df-pr 4549  df-op 4553  df-uni 4825  df-iun 4911  df-br 5059  df-opab 5121  df-mpt 5141  df-id 5460  df-xp 5562  df-rel 5563  df-cnv 5564  df-co 5565  df-dm 5566  df-rn 5567  df-res 5568  df-ima 5569  df-suc 6224  df-iota 6343  df-fun 6387  df-fn 6388  df-f 6389  df-f1 6390  df-fo 6391  df-f1o 6392  df-fv 6393  df-ov 7221  df-oprab 7222  df-mpo 7223  df-1st 7766  df-2nd 7767  df-1o 8207  df-map 8515  df-en 8632  df-top 21796  df-topon 21813  df-cn 22129  df-hmeo 22657  df-hmph 22658
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator