MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmphen2 Structured version   Visualization version   GIF version

Theorem hmphen2 21973
Description: Homeomorphisms preserve the cardinality of the underlying sets. (Contributed by FL, 17-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
Hypotheses
Ref Expression
cmphaushmeo.1 𝑋 = 𝐽
cmphaushmeo.2 𝑌 = 𝐾
Assertion
Ref Expression
hmphen2 (𝐽𝐾𝑋𝑌)

Proof of Theorem hmphen2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 hmph 21950 . 2 (𝐽𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅)
2 n0 4160 . . 3 ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾))
3 cmphaushmeo.1 . . . . . 6 𝑋 = 𝐽
4 cmphaushmeo.2 . . . . . 6 𝑌 = 𝐾
53, 4hmeof1o 21938 . . . . 5 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓:𝑋1-1-onto𝑌)
6 f1oen3g 8238 . . . . 5 ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑓:𝑋1-1-onto𝑌) → 𝑋𝑌)
75, 6mpdan 680 . . . 4 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑋𝑌)
87exlimiv 2031 . . 3 (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → 𝑋𝑌)
92, 8sylbi 209 . 2 ((𝐽Homeo𝐾) ≠ ∅ → 𝑋𝑌)
101, 9sylbi 209 1 (𝐽𝐾𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1658  wex 1880  wcel 2166  wne 2999  c0 4144   cuni 4658   class class class wbr 4873  1-1-ontowf1o 6122  (class class class)co 6905  cen 8219  Homeochmeo 21927  chmph 21928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-1st 7428  df-2nd 7429  df-1o 7826  df-map 8124  df-en 8223  df-top 21069  df-topon 21086  df-cn 21402  df-hmeo 21929  df-hmph 21930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator