![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hmphen2 | Structured version Visualization version GIF version |
Description: Homeomorphisms preserve the cardinality of the underlying sets. (Contributed by FL, 17-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
cmphaushmeo.1 | ⊢ 𝑋 = ∪ 𝐽 |
cmphaushmeo.2 | ⊢ 𝑌 = ∪ 𝐾 |
Ref | Expression |
---|---|
hmphen2 | ⊢ (𝐽 ≃ 𝐾 → 𝑋 ≈ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmph 23805 | . 2 ⊢ (𝐽 ≃ 𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅) | |
2 | n0 4376 | . . 3 ⊢ ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾)) | |
3 | cmphaushmeo.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
4 | cmphaushmeo.2 | . . . . . 6 ⊢ 𝑌 = ∪ 𝐾 | |
5 | 3, 4 | hmeof1o 23793 | . . . . 5 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓:𝑋–1-1-onto→𝑌) |
6 | f1oen3g 9026 | . . . . 5 ⊢ ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑓:𝑋–1-1-onto→𝑌) → 𝑋 ≈ 𝑌) | |
7 | 5, 6 | mpdan 686 | . . . 4 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝑋 ≈ 𝑌) |
8 | 7 | exlimiv 1929 | . . 3 ⊢ (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → 𝑋 ≈ 𝑌) |
9 | 2, 8 | sylbi 217 | . 2 ⊢ ((𝐽Homeo𝐾) ≠ ∅ → 𝑋 ≈ 𝑌) |
10 | 1, 9 | sylbi 217 | 1 ⊢ (𝐽 ≃ 𝐾 → 𝑋 ≈ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 ∅c0 4352 ∪ cuni 4931 class class class wbr 5166 –1-1-onto→wf1o 6572 (class class class)co 7448 ≈ cen 9000 Homeochmeo 23782 ≃ chmph 23783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-1o 8522 df-map 8886 df-en 9004 df-top 22921 df-topon 22938 df-cn 23256 df-hmeo 23784 df-hmph 23785 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |