| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hmphen2 | Structured version Visualization version GIF version | ||
| Description: Homeomorphisms preserve the cardinality of the underlying sets. (Contributed by FL, 17-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| cmphaushmeo.1 | ⊢ 𝑋 = ∪ 𝐽 |
| cmphaushmeo.2 | ⊢ 𝑌 = ∪ 𝐾 |
| Ref | Expression |
|---|---|
| hmphen2 | ⊢ (𝐽 ≃ 𝐾 → 𝑋 ≈ 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmph 23691 | . 2 ⊢ (𝐽 ≃ 𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅) | |
| 2 | n0 4300 | . . 3 ⊢ ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾)) | |
| 3 | cmphaushmeo.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 4 | cmphaushmeo.2 | . . . . . 6 ⊢ 𝑌 = ∪ 𝐾 | |
| 5 | 3, 4 | hmeof1o 23679 | . . . . 5 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓:𝑋–1-1-onto→𝑌) |
| 6 | f1oen3g 8889 | . . . . 5 ⊢ ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑓:𝑋–1-1-onto→𝑌) → 𝑋 ≈ 𝑌) | |
| 7 | 5, 6 | mpdan 687 | . . . 4 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝑋 ≈ 𝑌) |
| 8 | 7 | exlimiv 1931 | . . 3 ⊢ (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → 𝑋 ≈ 𝑌) |
| 9 | 2, 8 | sylbi 217 | . 2 ⊢ ((𝐽Homeo𝐾) ≠ ∅ → 𝑋 ≈ 𝑌) |
| 10 | 1, 9 | sylbi 217 | 1 ⊢ (𝐽 ≃ 𝐾 → 𝑋 ≈ 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∅c0 4280 ∪ cuni 4856 class class class wbr 5089 –1-1-onto→wf1o 6480 (class class class)co 7346 ≈ cen 8866 Homeochmeo 23668 ≃ chmph 23669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-1o 8385 df-map 8752 df-en 8870 df-top 22809 df-topon 22826 df-cn 23142 df-hmeo 23670 df-hmph 23671 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |