Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hmphen2 | Structured version Visualization version GIF version |
Description: Homeomorphisms preserve the cardinality of the underlying sets. (Contributed by FL, 17-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
cmphaushmeo.1 | ⊢ 𝑋 = ∪ 𝐽 |
cmphaushmeo.2 | ⊢ 𝑌 = ∪ 𝐾 |
Ref | Expression |
---|---|
hmphen2 | ⊢ (𝐽 ≃ 𝐾 → 𝑋 ≈ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmph 22678 | . 2 ⊢ (𝐽 ≃ 𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅) | |
2 | n0 4266 | . . 3 ⊢ ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾)) | |
3 | cmphaushmeo.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
4 | cmphaushmeo.2 | . . . . . 6 ⊢ 𝑌 = ∪ 𝐾 | |
5 | 3, 4 | hmeof1o 22666 | . . . . 5 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓:𝑋–1-1-onto→𝑌) |
6 | f1oen3g 8649 | . . . . 5 ⊢ ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑓:𝑋–1-1-onto→𝑌) → 𝑋 ≈ 𝑌) | |
7 | 5, 6 | mpdan 687 | . . . 4 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝑋 ≈ 𝑌) |
8 | 7 | exlimiv 1938 | . . 3 ⊢ (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → 𝑋 ≈ 𝑌) |
9 | 2, 8 | sylbi 220 | . 2 ⊢ ((𝐽Homeo𝐾) ≠ ∅ → 𝑋 ≈ 𝑌) |
10 | 1, 9 | sylbi 220 | 1 ⊢ (𝐽 ≃ 𝐾 → 𝑋 ≈ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∃wex 1787 ∈ wcel 2110 ≠ wne 2940 ∅c0 4242 ∪ cuni 4824 class class class wbr 5058 –1-1-onto→wf1o 6384 (class class class)co 7218 ≈ cen 8628 Homeochmeo 22655 ≃ chmph 22656 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5197 ax-nul 5204 ax-pow 5263 ax-pr 5327 ax-un 7528 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3415 df-sbc 3700 df-csb 3817 df-dif 3874 df-un 3876 df-in 3878 df-ss 3888 df-nul 4243 df-if 4445 df-pw 4520 df-sn 4547 df-pr 4549 df-op 4553 df-uni 4825 df-iun 4911 df-br 5059 df-opab 5121 df-mpt 5141 df-id 5460 df-xp 5562 df-rel 5563 df-cnv 5564 df-co 5565 df-dm 5566 df-rn 5567 df-res 5568 df-ima 5569 df-suc 6224 df-iota 6343 df-fun 6387 df-fn 6388 df-f 6389 df-f1 6390 df-fo 6391 df-f1o 6392 df-fv 6393 df-ov 7221 df-oprab 7222 df-mpo 7223 df-1st 7766 df-2nd 7767 df-1o 8207 df-map 8515 df-en 8632 df-top 21796 df-topon 21813 df-cn 22129 df-hmeo 22657 df-hmph 22658 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |