MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmphen2 Structured version   Visualization version   GIF version

Theorem hmphen2 23686
Description: Homeomorphisms preserve the cardinality of the underlying sets. (Contributed by FL, 17-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
Hypotheses
Ref Expression
cmphaushmeo.1 𝑋 = 𝐽
cmphaushmeo.2 𝑌 = 𝐾
Assertion
Ref Expression
hmphen2 (𝐽𝐾𝑋𝑌)

Proof of Theorem hmphen2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 hmph 23663 . 2 (𝐽𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅)
2 n0 4316 . . 3 ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾))
3 cmphaushmeo.1 . . . . . 6 𝑋 = 𝐽
4 cmphaushmeo.2 . . . . . 6 𝑌 = 𝐾
53, 4hmeof1o 23651 . . . . 5 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓:𝑋1-1-onto𝑌)
6 f1oen3g 8938 . . . . 5 ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑓:𝑋1-1-onto𝑌) → 𝑋𝑌)
75, 6mpdan 687 . . . 4 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑋𝑌)
87exlimiv 1930 . . 3 (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → 𝑋𝑌)
92, 8sylbi 217 . 2 ((𝐽Homeo𝐾) ≠ ∅ → 𝑋𝑌)
101, 9sylbi 217 1 (𝐽𝐾𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wex 1779  wcel 2109  wne 2925  c0 4296   cuni 4871   class class class wbr 5107  1-1-ontowf1o 6510  (class class class)co 7387  cen 8915  Homeochmeo 23640  chmph 23641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-1o 8434  df-map 8801  df-en 8919  df-top 22781  df-topon 22798  df-cn 23114  df-hmeo 23642  df-hmph 23643
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator