| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hmphen | Structured version Visualization version GIF version | ||
| Description: Homeomorphisms preserve the cardinality of the topologies. (Contributed by FL, 1-Jun-2008.) (Revised by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| hmphen | ⊢ (𝐽 ≃ 𝐾 → 𝐽 ≈ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmph 23714 | . 2 ⊢ (𝐽 ≃ 𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅) | |
| 2 | n0 4328 | . . 3 ⊢ ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾)) | |
| 3 | hmeocn 23698 | . . . . . 6 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓 ∈ (𝐽 Cn 𝐾)) | |
| 4 | cntop1 23178 | . . . . . 6 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝐽 ∈ Top) |
| 6 | cntop2 23179 | . . . . . 6 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
| 7 | 3, 6 | syl 17 | . . . . 5 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝐾 ∈ Top) |
| 8 | eqid 2735 | . . . . . 6 ⊢ (𝑥 ∈ 𝐽 ↦ (𝑓 “ 𝑥)) = (𝑥 ∈ 𝐽 ↦ (𝑓 “ 𝑥)) | |
| 9 | 8 | hmeoimaf1o 23708 | . . . . 5 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → (𝑥 ∈ 𝐽 ↦ (𝑓 “ 𝑥)):𝐽–1-1-onto→𝐾) |
| 10 | f1oen2g 8983 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ (𝑥 ∈ 𝐽 ↦ (𝑓 “ 𝑥)):𝐽–1-1-onto→𝐾) → 𝐽 ≈ 𝐾) | |
| 11 | 5, 7, 9, 10 | syl3anc 1373 | . . . 4 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝐽 ≈ 𝐾) |
| 12 | 11 | exlimiv 1930 | . . 3 ⊢ (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → 𝐽 ≈ 𝐾) |
| 13 | 2, 12 | sylbi 217 | . 2 ⊢ ((𝐽Homeo𝐾) ≠ ∅ → 𝐽 ≈ 𝐾) |
| 14 | 1, 13 | sylbi 217 | 1 ⊢ (𝐽 ≃ 𝐾 → 𝐽 ≈ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 ∈ wcel 2108 ≠ wne 2932 ∅c0 4308 class class class wbr 5119 ↦ cmpt 5201 “ cima 5657 –1-1-onto→wf1o 6530 (class class class)co 7405 ≈ cen 8956 Topctop 22831 Cn ccn 23162 Homeochmeo 23691 ≃ chmph 23692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-1o 8480 df-map 8842 df-en 8960 df-top 22832 df-topon 22849 df-cn 23165 df-hmeo 23693 df-hmph 23694 |
| This theorem is referenced by: hmph0 23733 hmphindis 23735 |
| Copyright terms: Public domain | W3C validator |