Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hmphen | Structured version Visualization version GIF version |
Description: Homeomorphisms preserve the cardinality of the topologies. (Contributed by FL, 1-Jun-2008.) (Revised by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
hmphen | ⊢ (𝐽 ≃ 𝐾 → 𝐽 ≈ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmph 22915 | . 2 ⊢ (𝐽 ≃ 𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅) | |
2 | n0 4281 | . . 3 ⊢ ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾)) | |
3 | hmeocn 22899 | . . . . . 6 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓 ∈ (𝐽 Cn 𝐾)) | |
4 | cntop1 22379 | . . . . . 6 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝐽 ∈ Top) |
6 | cntop2 22380 | . . . . . 6 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
7 | 3, 6 | syl 17 | . . . . 5 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝐾 ∈ Top) |
8 | eqid 2738 | . . . . . 6 ⊢ (𝑥 ∈ 𝐽 ↦ (𝑓 “ 𝑥)) = (𝑥 ∈ 𝐽 ↦ (𝑓 “ 𝑥)) | |
9 | 8 | hmeoimaf1o 22909 | . . . . 5 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → (𝑥 ∈ 𝐽 ↦ (𝑓 “ 𝑥)):𝐽–1-1-onto→𝐾) |
10 | f1oen2g 8744 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ (𝑥 ∈ 𝐽 ↦ (𝑓 “ 𝑥)):𝐽–1-1-onto→𝐾) → 𝐽 ≈ 𝐾) | |
11 | 5, 7, 9, 10 | syl3anc 1370 | . . . 4 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝐽 ≈ 𝐾) |
12 | 11 | exlimiv 1933 | . . 3 ⊢ (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → 𝐽 ≈ 𝐾) |
13 | 2, 12 | sylbi 216 | . 2 ⊢ ((𝐽Homeo𝐾) ≠ ∅ → 𝐽 ≈ 𝐾) |
14 | 1, 13 | sylbi 216 | 1 ⊢ (𝐽 ≃ 𝐾 → 𝐽 ≈ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 ∅c0 4257 class class class wbr 5074 ↦ cmpt 5157 “ cima 5588 –1-1-onto→wf1o 6426 (class class class)co 7268 ≈ cen 8718 Topctop 22030 Cn ccn 22363 Homeochmeo 22892 ≃ chmph 22893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5485 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-suc 6266 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7821 df-2nd 7822 df-1o 8285 df-map 8605 df-en 8722 df-top 22031 df-topon 22048 df-cn 22366 df-hmeo 22894 df-hmph 22895 |
This theorem is referenced by: hmph0 22934 hmphindis 22936 |
Copyright terms: Public domain | W3C validator |