![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hmphen | Structured version Visualization version GIF version |
Description: Homeomorphisms preserve the cardinality of the topologies. (Contributed by FL, 1-Jun-2008.) (Revised by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
hmphen | ⊢ (𝐽 ≃ 𝐾 → 𝐽 ≈ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmph 23502 | . 2 ⊢ (𝐽 ≃ 𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅) | |
2 | n0 4347 | . . 3 ⊢ ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾)) | |
3 | hmeocn 23486 | . . . . . 6 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓 ∈ (𝐽 Cn 𝐾)) | |
4 | cntop1 22966 | . . . . . 6 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝐽 ∈ Top) |
6 | cntop2 22967 | . . . . . 6 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
7 | 3, 6 | syl 17 | . . . . 5 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝐾 ∈ Top) |
8 | eqid 2730 | . . . . . 6 ⊢ (𝑥 ∈ 𝐽 ↦ (𝑓 “ 𝑥)) = (𝑥 ∈ 𝐽 ↦ (𝑓 “ 𝑥)) | |
9 | 8 | hmeoimaf1o 23496 | . . . . 5 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → (𝑥 ∈ 𝐽 ↦ (𝑓 “ 𝑥)):𝐽–1-1-onto→𝐾) |
10 | f1oen2g 8968 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ (𝑥 ∈ 𝐽 ↦ (𝑓 “ 𝑥)):𝐽–1-1-onto→𝐾) → 𝐽 ≈ 𝐾) | |
11 | 5, 7, 9, 10 | syl3anc 1369 | . . . 4 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝐽 ≈ 𝐾) |
12 | 11 | exlimiv 1931 | . . 3 ⊢ (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → 𝐽 ≈ 𝐾) |
13 | 2, 12 | sylbi 216 | . 2 ⊢ ((𝐽Homeo𝐾) ≠ ∅ → 𝐽 ≈ 𝐾) |
14 | 1, 13 | sylbi 216 | 1 ⊢ (𝐽 ≃ 𝐾 → 𝐽 ≈ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1779 ∈ wcel 2104 ≠ wne 2938 ∅c0 4323 class class class wbr 5149 ↦ cmpt 5232 “ cima 5680 –1-1-onto→wf1o 6543 (class class class)co 7413 ≈ cen 8940 Topctop 22617 Cn ccn 22950 Homeochmeo 23479 ≃ chmph 23480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7979 df-2nd 7980 df-1o 8470 df-map 8826 df-en 8944 df-top 22618 df-topon 22635 df-cn 22953 df-hmeo 23481 df-hmph 23482 |
This theorem is referenced by: hmph0 23521 hmphindis 23523 |
Copyright terms: Public domain | W3C validator |