MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmphen Structured version   Visualization version   GIF version

Theorem hmphen 23679
Description: Homeomorphisms preserve the cardinality of the topologies. (Contributed by FL, 1-Jun-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
hmphen (𝐽𝐾𝐽𝐾)

Proof of Theorem hmphen
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmph 23670 . 2 (𝐽𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅)
2 n0 4319 . . 3 ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾))
3 hmeocn 23654 . . . . . 6 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓 ∈ (𝐽 Cn 𝐾))
4 cntop1 23134 . . . . . 6 (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
53, 4syl 17 . . . . 5 (𝑓 ∈ (𝐽Homeo𝐾) → 𝐽 ∈ Top)
6 cntop2 23135 . . . . . 6 (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
73, 6syl 17 . . . . 5 (𝑓 ∈ (𝐽Homeo𝐾) → 𝐾 ∈ Top)
8 eqid 2730 . . . . . 6 (𝑥𝐽 ↦ (𝑓𝑥)) = (𝑥𝐽 ↦ (𝑓𝑥))
98hmeoimaf1o 23664 . . . . 5 (𝑓 ∈ (𝐽Homeo𝐾) → (𝑥𝐽 ↦ (𝑓𝑥)):𝐽1-1-onto𝐾)
10 f1oen2g 8943 . . . . 5 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ (𝑥𝐽 ↦ (𝑓𝑥)):𝐽1-1-onto𝐾) → 𝐽𝐾)
115, 7, 9, 10syl3anc 1373 . . . 4 (𝑓 ∈ (𝐽Homeo𝐾) → 𝐽𝐾)
1211exlimiv 1930 . . 3 (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → 𝐽𝐾)
132, 12sylbi 217 . 2 ((𝐽Homeo𝐾) ≠ ∅ → 𝐽𝐾)
141, 13sylbi 217 1 (𝐽𝐾𝐽𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1779  wcel 2109  wne 2926  c0 4299   class class class wbr 5110  cmpt 5191  cima 5644  1-1-ontowf1o 6513  (class class class)co 7390  cen 8918  Topctop 22787   Cn ccn 23118  Homeochmeo 23647  chmph 23648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-1o 8437  df-map 8804  df-en 8922  df-top 22788  df-topon 22805  df-cn 23121  df-hmeo 23649  df-hmph 23650
This theorem is referenced by:  hmph0  23689  hmphindis  23691
  Copyright terms: Public domain W3C validator