MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmphen Structured version   Visualization version   GIF version

Theorem hmphen 22844
Description: Homeomorphisms preserve the cardinality of the topologies. (Contributed by FL, 1-Jun-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
hmphen (𝐽𝐾𝐽𝐾)

Proof of Theorem hmphen
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmph 22835 . 2 (𝐽𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅)
2 n0 4277 . . 3 ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾))
3 hmeocn 22819 . . . . . 6 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓 ∈ (𝐽 Cn 𝐾))
4 cntop1 22299 . . . . . 6 (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
53, 4syl 17 . . . . 5 (𝑓 ∈ (𝐽Homeo𝐾) → 𝐽 ∈ Top)
6 cntop2 22300 . . . . . 6 (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
73, 6syl 17 . . . . 5 (𝑓 ∈ (𝐽Homeo𝐾) → 𝐾 ∈ Top)
8 eqid 2738 . . . . . 6 (𝑥𝐽 ↦ (𝑓𝑥)) = (𝑥𝐽 ↦ (𝑓𝑥))
98hmeoimaf1o 22829 . . . . 5 (𝑓 ∈ (𝐽Homeo𝐾) → (𝑥𝐽 ↦ (𝑓𝑥)):𝐽1-1-onto𝐾)
10 f1oen2g 8711 . . . . 5 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ (𝑥𝐽 ↦ (𝑓𝑥)):𝐽1-1-onto𝐾) → 𝐽𝐾)
115, 7, 9, 10syl3anc 1369 . . . 4 (𝑓 ∈ (𝐽Homeo𝐾) → 𝐽𝐾)
1211exlimiv 1934 . . 3 (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → 𝐽𝐾)
132, 12sylbi 216 . 2 ((𝐽Homeo𝐾) ≠ ∅ → 𝐽𝐾)
141, 13sylbi 216 1 (𝐽𝐾𝐽𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1783  wcel 2108  wne 2942  c0 4253   class class class wbr 5070  cmpt 5153  cima 5583  1-1-ontowf1o 6417  (class class class)co 7255  cen 8688  Topctop 21950   Cn ccn 22283  Homeochmeo 22812  chmph 22813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-1o 8267  df-map 8575  df-en 8692  df-top 21951  df-topon 21968  df-cn 22286  df-hmeo 22814  df-hmph 22815
This theorem is referenced by:  hmph0  22854  hmphindis  22856
  Copyright terms: Public domain W3C validator