| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmphmph | Structured version Visualization version GIF version | ||
| Description: Compactness is a topological property-that is, for any two homeomorphic topologies, either both are compact or neither is. (Contributed by Jeff Hankins, 30-Jun-2009.) (Revised by Mario Carneiro, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| cmphmph | ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Comp → 𝐾 ∈ Comp)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmph 23684 | . 2 ⊢ (𝐽 ≃ 𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅) | |
| 2 | n0 4301 | . . 3 ⊢ ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾)) | |
| 3 | eqid 2730 | . . . . . . 7 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | eqid 2730 | . . . . . . 7 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 5 | 3, 4 | hmeof1o 23672 | . . . . . 6 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓:∪ 𝐽–1-1-onto→∪ 𝐾) |
| 6 | f1ofo 6766 | . . . . . 6 ⊢ (𝑓:∪ 𝐽–1-1-onto→∪ 𝐾 → 𝑓:∪ 𝐽–onto→∪ 𝐾) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓:∪ 𝐽–onto→∪ 𝐾) |
| 8 | hmeocn 23668 | . . . . 5 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓 ∈ (𝐽 Cn 𝐾)) | |
| 9 | 4 | cncmp 23300 | . . . . . . 7 ⊢ ((𝐽 ∈ Comp ∧ 𝑓:∪ 𝐽–onto→∪ 𝐾 ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Comp) |
| 10 | 9 | 3expb 1120 | . . . . . 6 ⊢ ((𝐽 ∈ Comp ∧ (𝑓:∪ 𝐽–onto→∪ 𝐾 ∧ 𝑓 ∈ (𝐽 Cn 𝐾))) → 𝐾 ∈ Comp) |
| 11 | 10 | expcom 413 | . . . . 5 ⊢ ((𝑓:∪ 𝐽–onto→∪ 𝐾 ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → (𝐽 ∈ Comp → 𝐾 ∈ Comp)) |
| 12 | 7, 8, 11 | syl2anc 584 | . . . 4 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Comp → 𝐾 ∈ Comp)) |
| 13 | 12 | exlimiv 1931 | . . 3 ⊢ (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Comp → 𝐾 ∈ Comp)) |
| 14 | 2, 13 | sylbi 217 | . 2 ⊢ ((𝐽Homeo𝐾) ≠ ∅ → (𝐽 ∈ Comp → 𝐾 ∈ Comp)) |
| 15 | 1, 14 | sylbi 217 | 1 ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Comp → 𝐾 ∈ Comp)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2110 ≠ wne 2926 ∅c0 4281 ∪ cuni 4857 class class class wbr 5089 –onto→wfo 6475 –1-1-onto→wf1o 6476 (class class class)co 7341 Cn ccn 23132 Compccmp 23294 Homeochmeo 23661 ≃ chmph 23662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-1o 8380 df-map 8747 df-en 8865 df-dom 8866 df-fin 8868 df-top 22802 df-topon 22819 df-cn 23135 df-cmp 23295 df-hmeo 23663 df-hmph 23664 |
| This theorem is referenced by: ptcmpfi 23721 xrcmp 24866 reheibor 37858 |
| Copyright terms: Public domain | W3C validator |