MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmphmph Structured version   Visualization version   GIF version

Theorem cmphmph 23691
Description: Compactness is a topological property-that is, for any two homeomorphic topologies, either both are compact or neither is. (Contributed by Jeff Hankins, 30-Jun-2009.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
cmphmph (𝐽𝐾 → (𝐽 ∈ Comp → 𝐾 ∈ Comp))

Proof of Theorem cmphmph
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 hmph 23679 . 2 (𝐽𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅)
2 n0 4306 . . 3 ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾))
3 eqid 2729 . . . . . . 7 𝐽 = 𝐽
4 eqid 2729 . . . . . . 7 𝐾 = 𝐾
53, 4hmeof1o 23667 . . . . . 6 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓: 𝐽1-1-onto 𝐾)
6 f1ofo 6775 . . . . . 6 (𝑓: 𝐽1-1-onto 𝐾𝑓: 𝐽onto 𝐾)
75, 6syl 17 . . . . 5 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓: 𝐽onto 𝐾)
8 hmeocn 23663 . . . . 5 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓 ∈ (𝐽 Cn 𝐾))
94cncmp 23295 . . . . . . 7 ((𝐽 ∈ Comp ∧ 𝑓: 𝐽onto 𝐾𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Comp)
1093expb 1120 . . . . . 6 ((𝐽 ∈ Comp ∧ (𝑓: 𝐽onto 𝐾𝑓 ∈ (𝐽 Cn 𝐾))) → 𝐾 ∈ Comp)
1110expcom 413 . . . . 5 ((𝑓: 𝐽onto 𝐾𝑓 ∈ (𝐽 Cn 𝐾)) → (𝐽 ∈ Comp → 𝐾 ∈ Comp))
127, 8, 11syl2anc 584 . . . 4 (𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Comp → 𝐾 ∈ Comp))
1312exlimiv 1930 . . 3 (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Comp → 𝐾 ∈ Comp))
142, 13sylbi 217 . 2 ((𝐽Homeo𝐾) ≠ ∅ → (𝐽 ∈ Comp → 𝐾 ∈ Comp))
151, 14sylbi 217 1 (𝐽𝐾 → (𝐽 ∈ Comp → 𝐾 ∈ Comp))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2109  wne 2925  c0 4286   cuni 4861   class class class wbr 5095  ontowfo 6484  1-1-ontowf1o 6485  (class class class)co 7353   Cn ccn 23127  Compccmp 23289  Homeochmeo 23656  chmph 23657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-1o 8395  df-map 8762  df-en 8880  df-dom 8881  df-fin 8883  df-top 22797  df-topon 22814  df-cn 23130  df-cmp 23290  df-hmeo 23658  df-hmph 23659
This theorem is referenced by:  ptcmpfi  23716  xrcmp  24862  reheibor  37818
  Copyright terms: Public domain W3C validator