MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmphmph Structured version   Visualization version   GIF version

Theorem cmphmph 23712
Description: Compactness is a topological property-that is, for any two homeomorphic topologies, either both are compact or neither is. (Contributed by Jeff Hankins, 30-Jun-2009.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
cmphmph (𝐽𝐾 → (𝐽 ∈ Comp → 𝐾 ∈ Comp))

Proof of Theorem cmphmph
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 hmph 23700 . 2 (𝐽𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅)
2 n0 4350 . . 3 ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾))
3 eqid 2728 . . . . . . 7 𝐽 = 𝐽
4 eqid 2728 . . . . . . 7 𝐾 = 𝐾
53, 4hmeof1o 23688 . . . . . 6 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓: 𝐽1-1-onto 𝐾)
6 f1ofo 6851 . . . . . 6 (𝑓: 𝐽1-1-onto 𝐾𝑓: 𝐽onto 𝐾)
75, 6syl 17 . . . . 5 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓: 𝐽onto 𝐾)
8 hmeocn 23684 . . . . 5 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓 ∈ (𝐽 Cn 𝐾))
94cncmp 23316 . . . . . . 7 ((𝐽 ∈ Comp ∧ 𝑓: 𝐽onto 𝐾𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Comp)
1093expb 1117 . . . . . 6 ((𝐽 ∈ Comp ∧ (𝑓: 𝐽onto 𝐾𝑓 ∈ (𝐽 Cn 𝐾))) → 𝐾 ∈ Comp)
1110expcom 412 . . . . 5 ((𝑓: 𝐽onto 𝐾𝑓 ∈ (𝐽 Cn 𝐾)) → (𝐽 ∈ Comp → 𝐾 ∈ Comp))
127, 8, 11syl2anc 582 . . . 4 (𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Comp → 𝐾 ∈ Comp))
1312exlimiv 1925 . . 3 (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Comp → 𝐾 ∈ Comp))
142, 13sylbi 216 . 2 ((𝐽Homeo𝐾) ≠ ∅ → (𝐽 ∈ Comp → 𝐾 ∈ Comp))
151, 14sylbi 216 1 (𝐽𝐾 → (𝐽 ∈ Comp → 𝐾 ∈ Comp))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wex 1773  wcel 2098  wne 2937  c0 4326   cuni 4912   class class class wbr 5152  ontowfo 6551  1-1-ontowf1o 6552  (class class class)co 7426   Cn ccn 23148  Compccmp 23310  Homeochmeo 23677  chmph 23678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-1o 8493  df-er 8731  df-map 8853  df-en 8971  df-dom 8972  df-fin 8974  df-top 22816  df-topon 22833  df-cn 23151  df-cmp 23311  df-hmeo 23679  df-hmph 23680
This theorem is referenced by:  ptcmpfi  23737  xrcmp  24893  reheibor  37345
  Copyright terms: Public domain W3C validator