| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmphmph | Structured version Visualization version GIF version | ||
| Description: Compactness is a topological property-that is, for any two homeomorphic topologies, either both are compact or neither is. (Contributed by Jeff Hankins, 30-Jun-2009.) (Revised by Mario Carneiro, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| cmphmph | ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Comp → 𝐾 ∈ Comp)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmph 23679 | . 2 ⊢ (𝐽 ≃ 𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅) | |
| 2 | n0 4306 | . . 3 ⊢ ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾)) | |
| 3 | eqid 2729 | . . . . . . 7 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | eqid 2729 | . . . . . . 7 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 5 | 3, 4 | hmeof1o 23667 | . . . . . 6 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓:∪ 𝐽–1-1-onto→∪ 𝐾) |
| 6 | f1ofo 6775 | . . . . . 6 ⊢ (𝑓:∪ 𝐽–1-1-onto→∪ 𝐾 → 𝑓:∪ 𝐽–onto→∪ 𝐾) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓:∪ 𝐽–onto→∪ 𝐾) |
| 8 | hmeocn 23663 | . . . . 5 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓 ∈ (𝐽 Cn 𝐾)) | |
| 9 | 4 | cncmp 23295 | . . . . . . 7 ⊢ ((𝐽 ∈ Comp ∧ 𝑓:∪ 𝐽–onto→∪ 𝐾 ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Comp) |
| 10 | 9 | 3expb 1120 | . . . . . 6 ⊢ ((𝐽 ∈ Comp ∧ (𝑓:∪ 𝐽–onto→∪ 𝐾 ∧ 𝑓 ∈ (𝐽 Cn 𝐾))) → 𝐾 ∈ Comp) |
| 11 | 10 | expcom 413 | . . . . 5 ⊢ ((𝑓:∪ 𝐽–onto→∪ 𝐾 ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → (𝐽 ∈ Comp → 𝐾 ∈ Comp)) |
| 12 | 7, 8, 11 | syl2anc 584 | . . . 4 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Comp → 𝐾 ∈ Comp)) |
| 13 | 12 | exlimiv 1930 | . . 3 ⊢ (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Comp → 𝐾 ∈ Comp)) |
| 14 | 2, 13 | sylbi 217 | . 2 ⊢ ((𝐽Homeo𝐾) ≠ ∅ → (𝐽 ∈ Comp → 𝐾 ∈ Comp)) |
| 15 | 1, 14 | sylbi 217 | 1 ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Comp → 𝐾 ∈ Comp)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∅c0 4286 ∪ cuni 4861 class class class wbr 5095 –onto→wfo 6484 –1-1-onto→wf1o 6485 (class class class)co 7353 Cn ccn 23127 Compccmp 23289 Homeochmeo 23656 ≃ chmph 23657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-1o 8395 df-map 8762 df-en 8880 df-dom 8881 df-fin 8883 df-top 22797 df-topon 22814 df-cn 23130 df-cmp 23290 df-hmeo 23658 df-hmph 23659 |
| This theorem is referenced by: ptcmpfi 23716 xrcmp 24862 reheibor 37818 |
| Copyright terms: Public domain | W3C validator |