MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmphmph Structured version   Visualization version   GIF version

Theorem cmphmph 22391
Description: Compactness is a topological property-that is, for any two homeomorphic topologies, either both are compact or neither is. (Contributed by Jeff Hankins, 30-Jun-2009.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
cmphmph (𝐽𝐾 → (𝐽 ∈ Comp → 𝐾 ∈ Comp))

Proof of Theorem cmphmph
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 hmph 22379 . 2 (𝐽𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅)
2 n0 4282 . . 3 ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾))
3 eqid 2822 . . . . . . 7 𝐽 = 𝐽
4 eqid 2822 . . . . . . 7 𝐾 = 𝐾
53, 4hmeof1o 22367 . . . . . 6 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓: 𝐽1-1-onto 𝐾)
6 f1ofo 6604 . . . . . 6 (𝑓: 𝐽1-1-onto 𝐾𝑓: 𝐽onto 𝐾)
75, 6syl 17 . . . . 5 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓: 𝐽onto 𝐾)
8 hmeocn 22363 . . . . 5 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓 ∈ (𝐽 Cn 𝐾))
94cncmp 21995 . . . . . . 7 ((𝐽 ∈ Comp ∧ 𝑓: 𝐽onto 𝐾𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Comp)
1093expb 1117 . . . . . 6 ((𝐽 ∈ Comp ∧ (𝑓: 𝐽onto 𝐾𝑓 ∈ (𝐽 Cn 𝐾))) → 𝐾 ∈ Comp)
1110expcom 417 . . . . 5 ((𝑓: 𝐽onto 𝐾𝑓 ∈ (𝐽 Cn 𝐾)) → (𝐽 ∈ Comp → 𝐾 ∈ Comp))
127, 8, 11syl2anc 587 . . . 4 (𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Comp → 𝐾 ∈ Comp))
1312exlimiv 1931 . . 3 (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Comp → 𝐾 ∈ Comp))
142, 13sylbi 220 . 2 ((𝐽Homeo𝐾) ≠ ∅ → (𝐽 ∈ Comp → 𝐾 ∈ Comp))
151, 14sylbi 220 1 (𝐽𝐾 → (𝐽 ∈ Comp → 𝐾 ∈ Comp))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wex 1781  wcel 2114  wne 3011  c0 4265   cuni 4813   class class class wbr 5042  ontowfo 6332  1-1-ontowf1o 6333  (class class class)co 7140   Cn ccn 21827  Compccmp 21989  Homeochmeo 22356  chmph 22357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-fin 8500  df-top 21497  df-topon 21514  df-cn 21830  df-cmp 21990  df-hmeo 22358  df-hmph 22359
This theorem is referenced by:  ptcmpfi  22416  xrcmp  23551  reheibor  35235
  Copyright terms: Public domain W3C validator