MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrhmph Structured version   Visualization version   GIF version

Theorem xrhmph 24432
Description: The extended reals are homeomorphic to the interval [0, 1]. (Contributed by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
xrhmph II ≃ (ordTop‘ ≤ )

Proof of Theorem xrhmph
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neg1rr 12314 . . . 4 -1 ∈ ℝ
2 1re 11201 . . . 4 1 ∈ ℝ
3 neg1lt0 12316 . . . . 5 -1 < 0
4 0lt1 11723 . . . . 5 0 < 1
5 0re 11203 . . . . . 6 0 ∈ ℝ
61, 5, 2lttri 11327 . . . . 5 ((-1 < 0 ∧ 0 < 1) → -1 < 1)
73, 4, 6mp2an 691 . . . 4 -1 < 1
8 eqid 2733 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
9 eqid 2733 . . . . 5 (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 1) + ((1 − 𝑥) · -1))) = (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 1) + ((1 − 𝑥) · -1)))
108, 9icchmeo 24426 . . . 4 ((-1 ∈ ℝ ∧ 1 ∈ ℝ ∧ -1 < 1) → (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 1) + ((1 − 𝑥) · -1))) ∈ (IIHomeo((TopOpen‘ℂfld) ↾t (-1[,]1))))
111, 2, 7, 10mp3an 1462 . . 3 (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 1) + ((1 − 𝑥) · -1))) ∈ (IIHomeo((TopOpen‘ℂfld) ↾t (-1[,]1)))
12 hmphi 23250 . . 3 ((𝑥 ∈ (0[,]1) ↦ ((𝑥 · 1) + ((1 − 𝑥) · -1))) ∈ (IIHomeo((TopOpen‘ℂfld) ↾t (-1[,]1))) → II ≃ ((TopOpen‘ℂfld) ↾t (-1[,]1)))
1311, 12ax-mp 5 . 2 II ≃ ((TopOpen‘ℂfld) ↾t (-1[,]1))
14 eqid 2733 . . . . 5 (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))
15 eqid 2733 . . . . 5 (𝑦 ∈ (-1[,]1) ↦ if(0 ≤ 𝑦, ((𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))‘𝑦), -𝑒((𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))‘-𝑦))) = (𝑦 ∈ (-1[,]1) ↦ if(0 ≤ 𝑦, ((𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))‘𝑦), -𝑒((𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))‘-𝑦)))
1614, 15, 8xrhmeo 24431 . . . 4 ((𝑦 ∈ (-1[,]1) ↦ if(0 ≤ 𝑦, ((𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))‘𝑦), -𝑒((𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))‘-𝑦))) Isom < , < ((-1[,]1), ℝ*) ∧ (𝑦 ∈ (-1[,]1) ↦ if(0 ≤ 𝑦, ((𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))‘𝑦), -𝑒((𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))‘-𝑦))) ∈ (((TopOpen‘ℂfld) ↾t (-1[,]1))Homeo(ordTop‘ ≤ )))
1716simpri 487 . . 3 (𝑦 ∈ (-1[,]1) ↦ if(0 ≤ 𝑦, ((𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))‘𝑦), -𝑒((𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))‘-𝑦))) ∈ (((TopOpen‘ℂfld) ↾t (-1[,]1))Homeo(ordTop‘ ≤ ))
18 hmphi 23250 . . 3 ((𝑦 ∈ (-1[,]1) ↦ if(0 ≤ 𝑦, ((𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))‘𝑦), -𝑒((𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))‘-𝑦))) ∈ (((TopOpen‘ℂfld) ↾t (-1[,]1))Homeo(ordTop‘ ≤ )) → ((TopOpen‘ℂfld) ↾t (-1[,]1)) ≃ (ordTop‘ ≤ ))
1917, 18ax-mp 5 . 2 ((TopOpen‘ℂfld) ↾t (-1[,]1)) ≃ (ordTop‘ ≤ )
20 hmphtr 23256 . 2 ((II ≃ ((TopOpen‘ℂfld) ↾t (-1[,]1)) ∧ ((TopOpen‘ℂfld) ↾t (-1[,]1)) ≃ (ordTop‘ ≤ )) → II ≃ (ordTop‘ ≤ ))
2113, 19, 20mp2an 691 1 II ≃ (ordTop‘ ≤ )
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2107  ifcif 4524   class class class wbr 5144  cmpt 5227  cfv 6535   Isom wiso 6536  (class class class)co 7396  cr 11096  0cc0 11097  1c1 11098   + caddc 11100   · cmul 11102  +∞cpnf 11232  *cxr 11234   < clt 11235  cle 11236  cmin 11431  -cneg 11432   / cdiv 11858  -𝑒cxne 13076  [,]cicc 13314  t crest 17353  TopOpenctopn 17354  ordTopcordt 17432  fldccnfld 20918  Homeochmeo 23226  chmph 23227  IIcii 24360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174  ax-pre-sup 11175  ax-addf 11176  ax-mulf 11177
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4905  df-int 4947  df-iun 4995  df-iin 4996  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-isom 6544  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-of 7657  df-om 7843  df-1st 7962  df-2nd 7963  df-supp 8134  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-1o 8453  df-2o 8454  df-er 8691  df-map 8810  df-ixp 8880  df-en 8928  df-dom 8929  df-sdom 8930  df-fin 8931  df-fsupp 9350  df-fi 9393  df-sup 9424  df-inf 9425  df-oi 9492  df-card 9921  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-div 11859  df-nn 12200  df-2 12262  df-3 12263  df-4 12264  df-5 12265  df-6 12266  df-7 12267  df-8 12268  df-9 12269  df-n0 12460  df-z 12546  df-dec 12665  df-uz 12810  df-q 12920  df-rp 12962  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13315  df-ioc 13316  df-ico 13317  df-icc 13318  df-fz 13472  df-fzo 13615  df-seq 13954  df-exp 14015  df-hash 14278  df-cj 15033  df-re 15034  df-im 15035  df-sqrt 15169  df-abs 15170  df-struct 17067  df-sets 17084  df-slot 17102  df-ndx 17114  df-base 17132  df-ress 17161  df-plusg 17197  df-mulr 17198  df-starv 17199  df-sca 17200  df-vsca 17201  df-ip 17202  df-tset 17203  df-ple 17204  df-ds 17206  df-unif 17207  df-hom 17208  df-cco 17209  df-rest 17355  df-topn 17356  df-0g 17374  df-gsum 17375  df-topgen 17376  df-pt 17377  df-prds 17380  df-ordt 17434  df-xrs 17435  df-qtop 17440  df-imas 17441  df-xps 17443  df-mre 17517  df-mrc 17518  df-acs 17520  df-ps 18506  df-tsr 18507  df-mgm 18548  df-sgrp 18597  df-mnd 18613  df-submnd 18659  df-mulg 18936  df-cntz 19166  df-cmn 19634  df-psmet 20910  df-xmet 20911  df-met 20912  df-bl 20913  df-mopn 20914  df-cnfld 20919  df-top 22365  df-topon 22382  df-topsp 22404  df-bases 22418  df-cn 22700  df-cnp 22701  df-tx 23035  df-hmeo 23228  df-hmph 23229  df-xms 23795  df-ms 23796  df-tms 23797  df-ii 24362
This theorem is referenced by:  xrcmp  24433  xrconn  24434
  Copyright terms: Public domain W3C validator