Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrhmph | Structured version Visualization version GIF version |
Description: The extended reals are homeomorphic to the interval [0, 1]. (Contributed by Mario Carneiro, 9-Sep-2015.) |
Ref | Expression |
---|---|
xrhmph | ⊢ II ≃ (ordTop‘ ≤ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1rr 12088 | . . . 4 ⊢ -1 ∈ ℝ | |
2 | 1re 10975 | . . . 4 ⊢ 1 ∈ ℝ | |
3 | neg1lt0 12090 | . . . . 5 ⊢ -1 < 0 | |
4 | 0lt1 11497 | . . . . 5 ⊢ 0 < 1 | |
5 | 0re 10977 | . . . . . 6 ⊢ 0 ∈ ℝ | |
6 | 1, 5, 2 | lttri 11101 | . . . . 5 ⊢ ((-1 < 0 ∧ 0 < 1) → -1 < 1) |
7 | 3, 4, 6 | mp2an 689 | . . . 4 ⊢ -1 < 1 |
8 | eqid 2738 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
9 | eqid 2738 | . . . . 5 ⊢ (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 1) + ((1 − 𝑥) · -1))) = (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 1) + ((1 − 𝑥) · -1))) | |
10 | 8, 9 | icchmeo 24104 | . . . 4 ⊢ ((-1 ∈ ℝ ∧ 1 ∈ ℝ ∧ -1 < 1) → (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 1) + ((1 − 𝑥) · -1))) ∈ (IIHomeo((TopOpen‘ℂfld) ↾t (-1[,]1)))) |
11 | 1, 2, 7, 10 | mp3an 1460 | . . 3 ⊢ (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 1) + ((1 − 𝑥) · -1))) ∈ (IIHomeo((TopOpen‘ℂfld) ↾t (-1[,]1))) |
12 | hmphi 22928 | . . 3 ⊢ ((𝑥 ∈ (0[,]1) ↦ ((𝑥 · 1) + ((1 − 𝑥) · -1))) ∈ (IIHomeo((TopOpen‘ℂfld) ↾t (-1[,]1))) → II ≃ ((TopOpen‘ℂfld) ↾t (-1[,]1))) | |
13 | 11, 12 | ax-mp 5 | . 2 ⊢ II ≃ ((TopOpen‘ℂfld) ↾t (-1[,]1)) |
14 | eqid 2738 | . . . . 5 ⊢ (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))) | |
15 | eqid 2738 | . . . . 5 ⊢ (𝑦 ∈ (-1[,]1) ↦ if(0 ≤ 𝑦, ((𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))‘𝑦), -𝑒((𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))‘-𝑦))) = (𝑦 ∈ (-1[,]1) ↦ if(0 ≤ 𝑦, ((𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))‘𝑦), -𝑒((𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))‘-𝑦))) | |
16 | 14, 15, 8 | xrhmeo 24109 | . . . 4 ⊢ ((𝑦 ∈ (-1[,]1) ↦ if(0 ≤ 𝑦, ((𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))‘𝑦), -𝑒((𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))‘-𝑦))) Isom < , < ((-1[,]1), ℝ*) ∧ (𝑦 ∈ (-1[,]1) ↦ if(0 ≤ 𝑦, ((𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))‘𝑦), -𝑒((𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))‘-𝑦))) ∈ (((TopOpen‘ℂfld) ↾t (-1[,]1))Homeo(ordTop‘ ≤ ))) |
17 | 16 | simpri 486 | . . 3 ⊢ (𝑦 ∈ (-1[,]1) ↦ if(0 ≤ 𝑦, ((𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))‘𝑦), -𝑒((𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))‘-𝑦))) ∈ (((TopOpen‘ℂfld) ↾t (-1[,]1))Homeo(ordTop‘ ≤ )) |
18 | hmphi 22928 | . . 3 ⊢ ((𝑦 ∈ (-1[,]1) ↦ if(0 ≤ 𝑦, ((𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))‘𝑦), -𝑒((𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))‘-𝑦))) ∈ (((TopOpen‘ℂfld) ↾t (-1[,]1))Homeo(ordTop‘ ≤ )) → ((TopOpen‘ℂfld) ↾t (-1[,]1)) ≃ (ordTop‘ ≤ )) | |
19 | 17, 18 | ax-mp 5 | . 2 ⊢ ((TopOpen‘ℂfld) ↾t (-1[,]1)) ≃ (ordTop‘ ≤ ) |
20 | hmphtr 22934 | . 2 ⊢ ((II ≃ ((TopOpen‘ℂfld) ↾t (-1[,]1)) ∧ ((TopOpen‘ℂfld) ↾t (-1[,]1)) ≃ (ordTop‘ ≤ )) → II ≃ (ordTop‘ ≤ )) | |
21 | 13, 19, 20 | mp2an 689 | 1 ⊢ II ≃ (ordTop‘ ≤ ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 ifcif 4459 class class class wbr 5074 ↦ cmpt 5157 ‘cfv 6433 Isom wiso 6434 (class class class)co 7275 ℝcr 10870 0cc0 10871 1c1 10872 + caddc 10874 · cmul 10876 +∞cpnf 11006 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 − cmin 11205 -cneg 11206 / cdiv 11632 -𝑒cxne 12845 [,]cicc 13082 ↾t crest 17131 TopOpenctopn 17132 ordTopcordt 17210 ℂfldccnfld 20597 Homeochmeo 22904 ≃ chmph 22905 IIcii 24038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ioo 13083 df-ioc 13084 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-rest 17133 df-topn 17134 df-0g 17152 df-gsum 17153 df-topgen 17154 df-pt 17155 df-prds 17158 df-ordt 17212 df-xrs 17213 df-qtop 17218 df-imas 17219 df-xps 17221 df-mre 17295 df-mrc 17296 df-acs 17298 df-ps 18284 df-tsr 18285 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-mulg 18701 df-cntz 18923 df-cmn 19388 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-cnfld 20598 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cn 22378 df-cnp 22379 df-tx 22713 df-hmeo 22906 df-hmph 22907 df-xms 23473 df-ms 23474 df-tms 23475 df-ii 24040 |
This theorem is referenced by: xrcmp 24111 xrconn 24112 |
Copyright terms: Public domain | W3C validator |