Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reheibor Structured version   Visualization version   GIF version

Theorem reheibor 34662
Description: Heine-Borel theorem for real numbers. A subset of is compact iff it is closed and bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
reheibor.2 𝑀 = ((abs ∘ − ) ↾ (𝑌 × 𝑌))
reheibor.3 𝑇 = (MetOpen‘𝑀)
reheibor.4 𝑈 = (topGen‘ran (,))
Assertion
Ref Expression
reheibor (𝑌 ⊆ ℝ → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌))))

Proof of Theorem reheibor
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df1o2 7970 . . . 4 1o = {∅}
2 snfi 8445 . . . 4 {∅} ∈ Fin
31, 2eqeltri 2878 . . 3 1o ∈ Fin
4 imassrn 5820 . . . . 5 ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ⊆ ran (𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))
5 0ex 5105 . . . . . . . . . 10 ∅ ∈ V
6 eqid 2794 . . . . . . . . . . 11 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
7 eqid 2794 . . . . . . . . . . 11 (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) = (𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))
86, 7ismrer1 34661 . . . . . . . . . 10 (∅ ∈ V → (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘{∅})))
95, 8ax-mp 5 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘{∅}))
101fveq2i 6544 . . . . . . . . . 10 (ℝn‘1o) = (ℝn‘{∅})
1110oveq2i 7030 . . . . . . . . 9 (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o)) = (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘{∅}))
129, 11eleqtrri 2881 . . . . . . . 8 (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o))
136rexmet 23082 . . . . . . . . 9 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
14 eqid 2794 . . . . . . . . . . 11 (ℝ ↑𝑚 1o) = (ℝ ↑𝑚 1o)
1514rrnmet 34652 . . . . . . . . . 10 (1o ∈ Fin → (ℝn‘1o) ∈ (Met‘(ℝ ↑𝑚 1o)))
16 metxmet 22627 . . . . . . . . . 10 ((ℝn‘1o) ∈ (Met‘(ℝ ↑𝑚 1o)) → (ℝn‘1o) ∈ (∞Met‘(ℝ ↑𝑚 1o)))
173, 15, 16mp2b 10 . . . . . . . . 9 (ℝn‘1o) ∈ (∞Met‘(ℝ ↑𝑚 1o))
18 isismty 34624 . . . . . . . . 9 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ (ℝn‘1o) ∈ (∞Met‘(ℝ ↑𝑚 1o))) → ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o)) ↔ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})):ℝ–1-1-onto→(ℝ ↑𝑚 1o) ∧ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦((abs ∘ − ) ↾ (ℝ × ℝ))𝑧) = (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))‘𝑦)(ℝn‘1o)((𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))‘𝑧)))))
1913, 17, 18mp2an 688 . . . . . . . 8 ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o)) ↔ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})):ℝ–1-1-onto→(ℝ ↑𝑚 1o) ∧ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦((abs ∘ − ) ↾ (ℝ × ℝ))𝑧) = (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))‘𝑦)(ℝn‘1o)((𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))‘𝑧))))
2012, 19mpbi 231 . . . . . . 7 ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})):ℝ–1-1-onto→(ℝ ↑𝑚 1o) ∧ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦((abs ∘ − ) ↾ (ℝ × ℝ))𝑧) = (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))‘𝑦)(ℝn‘1o)((𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))‘𝑧)))
2120simpli 484 . . . . . 6 (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})):ℝ–1-1-onto→(ℝ ↑𝑚 1o)
22 f1of 6486 . . . . . 6 ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})):ℝ–1-1-onto→(ℝ ↑𝑚 1o) → (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})):ℝ⟶(ℝ ↑𝑚 1o))
23 frn 6391 . . . . . 6 ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})):ℝ⟶(ℝ ↑𝑚 1o) → ran (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ⊆ (ℝ ↑𝑚 1o))
2421, 22, 23mp2b 10 . . . . 5 ran (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ⊆ (ℝ ↑𝑚 1o)
254, 24sstri 3900 . . . 4 ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ⊆ (ℝ ↑𝑚 1o)
2625a1i 11 . . 3 (𝑌 ⊆ ℝ → ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ⊆ (ℝ ↑𝑚 1o))
27 eqid 2794 . . . 4 ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) = ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))
28 eqid 2794 . . . 4 (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) = (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))
29 eqid 2794 . . . 4 (MetOpen‘(ℝn‘1o)) = (MetOpen‘(ℝn‘1o))
3014, 27, 28, 29rrnheibor 34660 . . 3 ((1o ∈ Fin ∧ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ⊆ (ℝ ↑𝑚 1o)) → ((MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ∈ Comp ↔ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ∈ (Clsd‘(MetOpen‘(ℝn‘1o))) ∧ ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (Bnd‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
313, 26, 30sylancr 587 . 2 (𝑌 ⊆ ℝ → ((MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ∈ Comp ↔ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ∈ (Clsd‘(MetOpen‘(ℝn‘1o))) ∧ ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (Bnd‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
32 reheibor.2 . . . . . . 7 𝑀 = ((abs ∘ − ) ↾ (𝑌 × 𝑌))
33 cnxmet 23064 . . . . . . . 8 (abs ∘ − ) ∈ (∞Met‘ℂ)
34 id 22 . . . . . . . . 9 (𝑌 ⊆ ℝ → 𝑌 ⊆ ℝ)
35 ax-resscn 10443 . . . . . . . . 9 ℝ ⊆ ℂ
3634, 35syl6ss 3903 . . . . . . . 8 (𝑌 ⊆ ℝ → 𝑌 ⊆ ℂ)
37 xmetres2 22654 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑌 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
3833, 36, 37sylancr 587 . . . . . . 7 (𝑌 ⊆ ℝ → ((abs ∘ − ) ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
3932, 38syl5eqel 2886 . . . . . 6 (𝑌 ⊆ ℝ → 𝑀 ∈ (∞Met‘𝑌))
40 xmetres2 22654 . . . . . . 7 (((ℝn‘1o) ∈ (∞Met‘(ℝ ↑𝑚 1o)) ∧ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ⊆ (ℝ ↑𝑚 1o)) → ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (∞Met‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))
4117, 26, 40sylancr 587 . . . . . 6 (𝑌 ⊆ ℝ → ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (∞Met‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))
42 reheibor.3 . . . . . . 7 𝑇 = (MetOpen‘𝑀)
4342, 28ismtyhmeo 34628 . . . . . 6 ((𝑀 ∈ (∞Met‘𝑌) ∧ ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (∞Met‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) → (𝑀 Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ⊆ (𝑇Homeo(MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))))
4439, 41, 43syl2anc 584 . . . . 5 (𝑌 ⊆ ℝ → (𝑀 Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ⊆ (𝑇Homeo(MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))))
4513a1i 11 . . . . . . 7 (𝑌 ⊆ ℝ → ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ))
4617a1i 11 . . . . . . 7 (𝑌 ⊆ ℝ → (ℝn‘1o) ∈ (∞Met‘(ℝ ↑𝑚 1o)))
4712a1i 11 . . . . . . 7 (𝑌 ⊆ ℝ → (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o)))
48 eqid 2794 . . . . . . . 8 ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) = ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)
49 eqid 2794 . . . . . . . 8 (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝑌 × 𝑌)) = (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝑌 × 𝑌))
5048, 49, 27ismtyres 34631 . . . . . . 7 (((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ (ℝn‘1o) ∈ (∞Met‘(ℝ ↑𝑚 1o))) ∧ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o)) ∧ 𝑌 ⊆ ℝ)) → ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ↾ 𝑌) ∈ ((((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝑌 × 𝑌)) Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
5145, 46, 47, 34, 50syl22anc 835 . . . . . 6 (𝑌 ⊆ ℝ → ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ↾ 𝑌) ∈ ((((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝑌 × 𝑌)) Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
52 xpss12 5461 . . . . . . . . . 10 ((𝑌 ⊆ ℝ ∧ 𝑌 ⊆ ℝ) → (𝑌 × 𝑌) ⊆ (ℝ × ℝ))
5352anidms 567 . . . . . . . . 9 (𝑌 ⊆ ℝ → (𝑌 × 𝑌) ⊆ (ℝ × ℝ))
5453resabs1d 5768 . . . . . . . 8 (𝑌 ⊆ ℝ → (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝑌 × 𝑌)) = ((abs ∘ − ) ↾ (𝑌 × 𝑌)))
5554, 32syl6eqr 2848 . . . . . . 7 (𝑌 ⊆ ℝ → (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝑌 × 𝑌)) = 𝑀)
5655oveq1d 7034 . . . . . 6 (𝑌 ⊆ ℝ → ((((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝑌 × 𝑌)) Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) = (𝑀 Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
5751, 56eleqtrd 2884 . . . . 5 (𝑌 ⊆ ℝ → ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ↾ 𝑌) ∈ (𝑀 Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
5844, 57sseldd 3892 . . . 4 (𝑌 ⊆ ℝ → ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ↾ 𝑌) ∈ (𝑇Homeo(MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))))
59 hmphi 22069 . . . 4 (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ↾ 𝑌) ∈ (𝑇Homeo(MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))) → 𝑇 ≃ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
6058, 59syl 17 . . 3 (𝑌 ⊆ ℝ → 𝑇 ≃ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
61 cmphmph 22080 . . . 4 (𝑇 ≃ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) → (𝑇 ∈ Comp → (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ∈ Comp))
62 hmphsym 22074 . . . . 5 (𝑇 ≃ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) → (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ≃ 𝑇)
63 cmphmph 22080 . . . . 5 ((MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ≃ 𝑇 → ((MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ∈ Comp → 𝑇 ∈ Comp))
6462, 63syl 17 . . . 4 (𝑇 ≃ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) → ((MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ∈ Comp → 𝑇 ∈ Comp))
6561, 64impbid 213 . . 3 (𝑇 ≃ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) → (𝑇 ∈ Comp ↔ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ∈ Comp))
6660, 65syl 17 . 2 (𝑌 ⊆ ℝ → (𝑇 ∈ Comp ↔ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ∈ Comp))
67 reheibor.4 . . . . . . . 8 𝑈 = (topGen‘ran (,))
68 eqid 2794 . . . . . . . . 9 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
696, 68tgioo 23087 . . . . . . . 8 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
7067, 69eqtri 2818 . . . . . . 7 𝑈 = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
7170, 29ismtyhmeo 34628 . . . . . 6 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ (ℝn‘1o) ∈ (∞Met‘(ℝ ↑𝑚 1o))) → (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o)) ⊆ (𝑈Homeo(MetOpen‘(ℝn‘1o))))
7213, 17, 71mp2an 688 . . . . 5 (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o)) ⊆ (𝑈Homeo(MetOpen‘(ℝn‘1o)))
7372, 12sselii 3888 . . . 4 (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (𝑈Homeo(MetOpen‘(ℝn‘1o)))
74 retopon 23055 . . . . . . 7 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
7567, 74eqeltri 2878 . . . . . 6 𝑈 ∈ (TopOn‘ℝ)
7675toponunii 21208 . . . . 5 ℝ = 𝑈
7776hmeocld 22059 . . . 4 (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (𝑈Homeo(MetOpen‘(ℝn‘1o))) ∧ 𝑌 ⊆ ℝ) → (𝑌 ∈ (Clsd‘𝑈) ↔ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ∈ (Clsd‘(MetOpen‘(ℝn‘1o)))))
7873, 34, 77sylancr 587 . . 3 (𝑌 ⊆ ℝ → (𝑌 ∈ (Clsd‘𝑈) ↔ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ∈ (Clsd‘(MetOpen‘(ℝn‘1o)))))
79 ismtybnd 34630 . . . 4 ((𝑀 ∈ (∞Met‘𝑌) ∧ ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (∞Met‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)) ∧ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ↾ 𝑌) ∈ (𝑀 Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))) → (𝑀 ∈ (Bnd‘𝑌) ↔ ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (Bnd‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))
8039, 41, 57, 79syl3anc 1364 . . 3 (𝑌 ⊆ ℝ → (𝑀 ∈ (Bnd‘𝑌) ↔ ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (Bnd‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))
8178, 80anbi12d 630 . 2 (𝑌 ⊆ ℝ → ((𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌)) ↔ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ∈ (Clsd‘(MetOpen‘(ℝn‘1o))) ∧ ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (Bnd‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
8231, 66, 813bitr4d 312 1 (𝑌 ⊆ ℝ → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wcel 2080  wral 3104  Vcvv 3436  wss 3861  c0 4213  {csn 4474   class class class wbr 4964  cmpt 5043   × cxp 5444  ran crn 5447  cres 5448  cima 5449  ccom 5450  wf 6224  1-1-ontowf1o 6227  cfv 6228  (class class class)co 7019  1oc1o 7949  𝑚 cmap 8259  Fincfn 8360  cc 10384  cr 10385  cmin 10719  (,)cioo 12588  abscabs 14427  topGenctg 16540  ∞Metcxmet 20212  Metcmet 20213  MetOpencmopn 20217  TopOnctopon 21202  Clsdccld 21308  Compccmp 21678  Homeochmeo 22045  chmph 22046  Bndcbnd 34590   Ismty cismty 34621  ncrrn 34648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-13 2343  ax-ext 2768  ax-rep 5084  ax-sep 5097  ax-nul 5104  ax-pow 5160  ax-pr 5224  ax-un 7322  ax-inf2 8953  ax-cc 9706  ax-cnex 10442  ax-resscn 10443  ax-1cn 10444  ax-icn 10445  ax-addcl 10446  ax-addrcl 10447  ax-mulcl 10448  ax-mulrcl 10449  ax-mulcom 10450  ax-addass 10451  ax-mulass 10452  ax-distr 10453  ax-i2m1 10454  ax-1ne0 10455  ax-1rid 10456  ax-rnegex 10457  ax-rrecex 10458  ax-cnre 10459  ax-pre-lttri 10460  ax-pre-lttrn 10461  ax-pre-ltadd 10462  ax-pre-mulgt0 10463  ax-pre-sup 10464  ax-addf 10465  ax-mulf 10466
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1763  df-nf 1767  df-sb 2042  df-mo 2575  df-eu 2611  df-clab 2775  df-cleq 2787  df-clel 2862  df-nfc 2934  df-ne 2984  df-nel 3090  df-ral 3109  df-rex 3110  df-reu 3111  df-rmo 3112  df-rab 3113  df-v 3438  df-sbc 3708  df-csb 3814  df-dif 3864  df-un 3866  df-in 3868  df-ss 3876  df-pss 3878  df-nul 4214  df-if 4384  df-pw 4457  df-sn 4475  df-pr 4477  df-tp 4479  df-op 4481  df-uni 4748  df-int 4785  df-iun 4829  df-iin 4830  df-br 4965  df-opab 5027  df-mpt 5044  df-tr 5067  df-id 5351  df-eprel 5356  df-po 5365  df-so 5366  df-fr 5405  df-se 5406  df-we 5407  df-xp 5452  df-rel 5453  df-cnv 5454  df-co 5455  df-dm 5456  df-rn 5457  df-res 5458  df-ima 5459  df-pred 6026  df-ord 6072  df-on 6073  df-lim 6074  df-suc 6075  df-iota 6192  df-fun 6230  df-fn 6231  df-f 6232  df-f1 6233  df-fo 6234  df-f1o 6235  df-fv 6236  df-isom 6237  df-riota 6980  df-ov 7022  df-oprab 7023  df-mpo 7024  df-om 7440  df-1st 7548  df-2nd 7549  df-wrecs 7801  df-recs 7863  df-rdg 7901  df-1o 7956  df-2o 7957  df-oadd 7960  df-omul 7961  df-er 8142  df-ec 8144  df-map 8261  df-pm 8262  df-ixp 8314  df-en 8361  df-dom 8362  df-sdom 8363  df-fin 8364  df-fi 8724  df-sup 8755  df-inf 8756  df-oi 8823  df-card 9217  df-acn 9220  df-pnf 10526  df-mnf 10527  df-xr 10528  df-ltxr 10529  df-le 10530  df-sub 10721  df-neg 10722  df-div 11148  df-nn 11489  df-2 11550  df-3 11551  df-4 11552  df-5 11553  df-6 11554  df-7 11555  df-8 11556  df-9 11557  df-n0 11748  df-z 11832  df-dec 11949  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-ioo 12592  df-ico 12594  df-icc 12595  df-fz 12743  df-fzo 12884  df-fl 13012  df-seq 13220  df-exp 13280  df-hash 13541  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-limsup 14662  df-clim 14679  df-rlim 14680  df-sum 14877  df-gz 16095  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-starv 16409  df-sca 16410  df-vsca 16411  df-ip 16412  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-hom 16418  df-cco 16419  df-rest 16525  df-topn 16526  df-topgen 16546  df-prds 16550  df-pws 16552  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-fbas 20224  df-fg 20225  df-cnfld 20228  df-top 21186  df-topon 21203  df-topsp 21225  df-bases 21238  df-cld 21311  df-ntr 21312  df-cls 21313  df-nei 21390  df-cn 21519  df-lm 21521  df-haus 21607  df-cmp 21679  df-hmeo 22047  df-hmph 22048  df-fil 22138  df-fm 22230  df-flim 22231  df-flf 22232  df-xms 22613  df-ms 22614  df-cfil 23541  df-cau 23542  df-cmet 23543  df-totbnd 34591  df-bnd 34602  df-ismty 34622  df-rrn 34649
This theorem is referenced by:  icccmpALT  34664
  Copyright terms: Public domain W3C validator