Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reheibor Structured version   Visualization version   GIF version

Theorem reheibor 37806
Description: Heine-Borel theorem for real numbers. A subset of is compact iff it is closed and bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
reheibor.2 𝑀 = ((abs ∘ − ) ↾ (𝑌 × 𝑌))
reheibor.3 𝑇 = (MetOpen‘𝑀)
reheibor.4 𝑈 = (topGen‘ran (,))
Assertion
Ref Expression
reheibor (𝑌 ⊆ ℝ → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌))))

Proof of Theorem reheibor
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df1o2 8418 . . . 4 1o = {∅}
2 snfi 8991 . . . 4 {∅} ∈ Fin
31, 2eqeltri 2824 . . 3 1o ∈ Fin
4 imassrn 6031 . . . . 5 ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ⊆ ran (𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))
5 0ex 5257 . . . . . . . . . 10 ∅ ∈ V
6 eqid 2729 . . . . . . . . . . 11 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
7 eqid 2729 . . . . . . . . . . 11 (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) = (𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))
86, 7ismrer1 37805 . . . . . . . . . 10 (∅ ∈ V → (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘{∅})))
95, 8ax-mp 5 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘{∅}))
101fveq2i 6843 . . . . . . . . . 10 (ℝn‘1o) = (ℝn‘{∅})
1110oveq2i 7380 . . . . . . . . 9 (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o)) = (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘{∅}))
129, 11eleqtrri 2827 . . . . . . . 8 (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o))
136rexmet 24655 . . . . . . . . 9 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
14 eqid 2729 . . . . . . . . . . 11 (ℝ ↑m 1o) = (ℝ ↑m 1o)
1514rrnmet 37796 . . . . . . . . . 10 (1o ∈ Fin → (ℝn‘1o) ∈ (Met‘(ℝ ↑m 1o)))
16 metxmet 24198 . . . . . . . . . 10 ((ℝn‘1o) ∈ (Met‘(ℝ ↑m 1o)) → (ℝn‘1o) ∈ (∞Met‘(ℝ ↑m 1o)))
173, 15, 16mp2b 10 . . . . . . . . 9 (ℝn‘1o) ∈ (∞Met‘(ℝ ↑m 1o))
18 isismty 37768 . . . . . . . . 9 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ (ℝn‘1o) ∈ (∞Met‘(ℝ ↑m 1o))) → ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o)) ↔ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})):ℝ–1-1-onto→(ℝ ↑m 1o) ∧ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦((abs ∘ − ) ↾ (ℝ × ℝ))𝑧) = (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))‘𝑦)(ℝn‘1o)((𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))‘𝑧)))))
1913, 17, 18mp2an 692 . . . . . . . 8 ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o)) ↔ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})):ℝ–1-1-onto→(ℝ ↑m 1o) ∧ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦((abs ∘ − ) ↾ (ℝ × ℝ))𝑧) = (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))‘𝑦)(ℝn‘1o)((𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))‘𝑧))))
2012, 19mpbi 230 . . . . . . 7 ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})):ℝ–1-1-onto→(ℝ ↑m 1o) ∧ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦((abs ∘ − ) ↾ (ℝ × ℝ))𝑧) = (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))‘𝑦)(ℝn‘1o)((𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))‘𝑧)))
2120simpli 483 . . . . . 6 (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})):ℝ–1-1-onto→(ℝ ↑m 1o)
22 f1of 6782 . . . . . 6 ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})):ℝ–1-1-onto→(ℝ ↑m 1o) → (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})):ℝ⟶(ℝ ↑m 1o))
23 frn 6677 . . . . . 6 ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})):ℝ⟶(ℝ ↑m 1o) → ran (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ⊆ (ℝ ↑m 1o))
2421, 22, 23mp2b 10 . . . . 5 ran (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ⊆ (ℝ ↑m 1o)
254, 24sstri 3953 . . . 4 ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ⊆ (ℝ ↑m 1o)
2625a1i 11 . . 3 (𝑌 ⊆ ℝ → ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ⊆ (ℝ ↑m 1o))
27 eqid 2729 . . . 4 ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) = ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))
28 eqid 2729 . . . 4 (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) = (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))
29 eqid 2729 . . . 4 (MetOpen‘(ℝn‘1o)) = (MetOpen‘(ℝn‘1o))
3014, 27, 28, 29rrnheibor 37804 . . 3 ((1o ∈ Fin ∧ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ⊆ (ℝ ↑m 1o)) → ((MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ∈ Comp ↔ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ∈ (Clsd‘(MetOpen‘(ℝn‘1o))) ∧ ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (Bnd‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
313, 26, 30sylancr 587 . 2 (𝑌 ⊆ ℝ → ((MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ∈ Comp ↔ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ∈ (Clsd‘(MetOpen‘(ℝn‘1o))) ∧ ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (Bnd‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
32 reheibor.2 . . . . . . 7 𝑀 = ((abs ∘ − ) ↾ (𝑌 × 𝑌))
33 cnxmet 24636 . . . . . . . 8 (abs ∘ − ) ∈ (∞Met‘ℂ)
34 id 22 . . . . . . . . 9 (𝑌 ⊆ ℝ → 𝑌 ⊆ ℝ)
35 ax-resscn 11101 . . . . . . . . 9 ℝ ⊆ ℂ
3634, 35sstrdi 3956 . . . . . . . 8 (𝑌 ⊆ ℝ → 𝑌 ⊆ ℂ)
37 xmetres2 24225 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑌 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
3833, 36, 37sylancr 587 . . . . . . 7 (𝑌 ⊆ ℝ → ((abs ∘ − ) ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
3932, 38eqeltrid 2832 . . . . . 6 (𝑌 ⊆ ℝ → 𝑀 ∈ (∞Met‘𝑌))
40 xmetres2 24225 . . . . . . 7 (((ℝn‘1o) ∈ (∞Met‘(ℝ ↑m 1o)) ∧ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ⊆ (ℝ ↑m 1o)) → ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (∞Met‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))
4117, 26, 40sylancr 587 . . . . . 6 (𝑌 ⊆ ℝ → ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (∞Met‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))
42 reheibor.3 . . . . . . 7 𝑇 = (MetOpen‘𝑀)
4342, 28ismtyhmeo 37772 . . . . . 6 ((𝑀 ∈ (∞Met‘𝑌) ∧ ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (∞Met‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) → (𝑀 Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ⊆ (𝑇Homeo(MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))))
4439, 41, 43syl2anc 584 . . . . 5 (𝑌 ⊆ ℝ → (𝑀 Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ⊆ (𝑇Homeo(MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))))
4513a1i 11 . . . . . . 7 (𝑌 ⊆ ℝ → ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ))
4617a1i 11 . . . . . . 7 (𝑌 ⊆ ℝ → (ℝn‘1o) ∈ (∞Met‘(ℝ ↑m 1o)))
4712a1i 11 . . . . . . 7 (𝑌 ⊆ ℝ → (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o)))
48 eqid 2729 . . . . . . . 8 ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) = ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)
49 eqid 2729 . . . . . . . 8 (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝑌 × 𝑌)) = (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝑌 × 𝑌))
5048, 49, 27ismtyres 37775 . . . . . . 7 (((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ (ℝn‘1o) ∈ (∞Met‘(ℝ ↑m 1o))) ∧ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o)) ∧ 𝑌 ⊆ ℝ)) → ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ↾ 𝑌) ∈ ((((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝑌 × 𝑌)) Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
5145, 46, 47, 34, 50syl22anc 838 . . . . . 6 (𝑌 ⊆ ℝ → ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ↾ 𝑌) ∈ ((((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝑌 × 𝑌)) Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
52 xpss12 5646 . . . . . . . . . 10 ((𝑌 ⊆ ℝ ∧ 𝑌 ⊆ ℝ) → (𝑌 × 𝑌) ⊆ (ℝ × ℝ))
5352anidms 566 . . . . . . . . 9 (𝑌 ⊆ ℝ → (𝑌 × 𝑌) ⊆ (ℝ × ℝ))
5453resabs1d 5968 . . . . . . . 8 (𝑌 ⊆ ℝ → (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝑌 × 𝑌)) = ((abs ∘ − ) ↾ (𝑌 × 𝑌)))
5554, 32eqtr4di 2782 . . . . . . 7 (𝑌 ⊆ ℝ → (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝑌 × 𝑌)) = 𝑀)
5655oveq1d 7384 . . . . . 6 (𝑌 ⊆ ℝ → ((((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝑌 × 𝑌)) Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) = (𝑀 Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
5751, 56eleqtrd 2830 . . . . 5 (𝑌 ⊆ ℝ → ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ↾ 𝑌) ∈ (𝑀 Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
5844, 57sseldd 3944 . . . 4 (𝑌 ⊆ ℝ → ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ↾ 𝑌) ∈ (𝑇Homeo(MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))))
59 hmphi 23640 . . . 4 (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ↾ 𝑌) ∈ (𝑇Homeo(MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))) → 𝑇 ≃ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
6058, 59syl 17 . . 3 (𝑌 ⊆ ℝ → 𝑇 ≃ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
61 cmphmph 23651 . . . 4 (𝑇 ≃ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) → (𝑇 ∈ Comp → (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ∈ Comp))
62 hmphsym 23645 . . . . 5 (𝑇 ≃ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) → (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ≃ 𝑇)
63 cmphmph 23651 . . . . 5 ((MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ≃ 𝑇 → ((MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ∈ Comp → 𝑇 ∈ Comp))
6462, 63syl 17 . . . 4 (𝑇 ≃ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) → ((MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ∈ Comp → 𝑇 ∈ Comp))
6561, 64impbid 212 . . 3 (𝑇 ≃ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) → (𝑇 ∈ Comp ↔ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ∈ Comp))
6660, 65syl 17 . 2 (𝑌 ⊆ ℝ → (𝑇 ∈ Comp ↔ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ∈ Comp))
67 reheibor.4 . . . . . . . 8 𝑈 = (topGen‘ran (,))
68 eqid 2729 . . . . . . . . 9 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
696, 68tgioo 24660 . . . . . . . 8 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
7067, 69eqtri 2752 . . . . . . 7 𝑈 = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
7170, 29ismtyhmeo 37772 . . . . . 6 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ (ℝn‘1o) ∈ (∞Met‘(ℝ ↑m 1o))) → (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o)) ⊆ (𝑈Homeo(MetOpen‘(ℝn‘1o))))
7213, 17, 71mp2an 692 . . . . 5 (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o)) ⊆ (𝑈Homeo(MetOpen‘(ℝn‘1o)))
7372, 12sselii 3940 . . . 4 (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (𝑈Homeo(MetOpen‘(ℝn‘1o)))
74 retopon 24627 . . . . . . 7 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
7567, 74eqeltri 2824 . . . . . 6 𝑈 ∈ (TopOn‘ℝ)
7675toponunii 22779 . . . . 5 ℝ = 𝑈
7776hmeocld 23630 . . . 4 (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (𝑈Homeo(MetOpen‘(ℝn‘1o))) ∧ 𝑌 ⊆ ℝ) → (𝑌 ∈ (Clsd‘𝑈) ↔ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ∈ (Clsd‘(MetOpen‘(ℝn‘1o)))))
7873, 34, 77sylancr 587 . . 3 (𝑌 ⊆ ℝ → (𝑌 ∈ (Clsd‘𝑈) ↔ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ∈ (Clsd‘(MetOpen‘(ℝn‘1o)))))
79 ismtybnd 37774 . . . 4 ((𝑀 ∈ (∞Met‘𝑌) ∧ ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (∞Met‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)) ∧ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ↾ 𝑌) ∈ (𝑀 Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))) → (𝑀 ∈ (Bnd‘𝑌) ↔ ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (Bnd‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))
8039, 41, 57, 79syl3anc 1373 . . 3 (𝑌 ⊆ ℝ → (𝑀 ∈ (Bnd‘𝑌) ↔ ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (Bnd‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))
8178, 80anbi12d 632 . 2 (𝑌 ⊆ ℝ → ((𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌)) ↔ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ∈ (Clsd‘(MetOpen‘(ℝn‘1o))) ∧ ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (Bnd‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
8231, 66, 813bitr4d 311 1 (𝑌 ⊆ ℝ → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  wss 3911  c0 4292  {csn 4585   class class class wbr 5102  cmpt 5183   × cxp 5629  ran crn 5632  cres 5633  cima 5634  ccom 5635  wf 6495  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  1oc1o 8404  m cmap 8776  Fincfn 8895  cc 11042  cr 11043  cmin 11381  (,)cioo 13282  abscabs 15176  topGenctg 17376  ∞Metcxmet 21225  Metcmet 21226  MetOpencmopn 21230  TopOnctopon 22773  Clsdccld 22879  Compccmp 23249  Homeochmeo 23616  chmph 23617  Bndcbnd 37734   Ismty cismty 37765  ncrrn 37792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cc 10364  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-ec 8650  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-gz 16877  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-topgen 17382  df-prds 17386  df-pws 17388  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-cn 23090  df-lm 23092  df-haus 23178  df-cmp 23250  df-hmeo 23618  df-hmph 23619  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-cfil 25131  df-cau 25132  df-cmet 25133  df-totbnd 37735  df-bnd 37746  df-ismty 37766  df-rrn 37793
This theorem is referenced by:  icccmpALT  37808
  Copyright terms: Public domain W3C validator