Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reheibor Structured version   Visualization version   GIF version

Theorem reheibor 36298
Description: Heine-Borel theorem for real numbers. A subset of is compact iff it is closed and bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
reheibor.2 𝑀 = ((abs ∘ − ) ↾ (𝑌 × 𝑌))
reheibor.3 𝑇 = (MetOpen‘𝑀)
reheibor.4 𝑈 = (topGen‘ran (,))
Assertion
Ref Expression
reheibor (𝑌 ⊆ ℝ → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌))))

Proof of Theorem reheibor
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df1o2 8419 . . . 4 1o = {∅}
2 snfi 8988 . . . 4 {∅} ∈ Fin
31, 2eqeltri 2834 . . 3 1o ∈ Fin
4 imassrn 6024 . . . . 5 ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ⊆ ran (𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))
5 0ex 5264 . . . . . . . . . 10 ∅ ∈ V
6 eqid 2736 . . . . . . . . . . 11 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
7 eqid 2736 . . . . . . . . . . 11 (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) = (𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))
86, 7ismrer1 36297 . . . . . . . . . 10 (∅ ∈ V → (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘{∅})))
95, 8ax-mp 5 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘{∅}))
101fveq2i 6845 . . . . . . . . . 10 (ℝn‘1o) = (ℝn‘{∅})
1110oveq2i 7368 . . . . . . . . 9 (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o)) = (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘{∅}))
129, 11eleqtrri 2837 . . . . . . . 8 (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o))
136rexmet 24154 . . . . . . . . 9 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
14 eqid 2736 . . . . . . . . . . 11 (ℝ ↑m 1o) = (ℝ ↑m 1o)
1514rrnmet 36288 . . . . . . . . . 10 (1o ∈ Fin → (ℝn‘1o) ∈ (Met‘(ℝ ↑m 1o)))
16 metxmet 23687 . . . . . . . . . 10 ((ℝn‘1o) ∈ (Met‘(ℝ ↑m 1o)) → (ℝn‘1o) ∈ (∞Met‘(ℝ ↑m 1o)))
173, 15, 16mp2b 10 . . . . . . . . 9 (ℝn‘1o) ∈ (∞Met‘(ℝ ↑m 1o))
18 isismty 36260 . . . . . . . . 9 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ (ℝn‘1o) ∈ (∞Met‘(ℝ ↑m 1o))) → ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o)) ↔ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})):ℝ–1-1-onto→(ℝ ↑m 1o) ∧ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦((abs ∘ − ) ↾ (ℝ × ℝ))𝑧) = (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))‘𝑦)(ℝn‘1o)((𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))‘𝑧)))))
1913, 17, 18mp2an 690 . . . . . . . 8 ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o)) ↔ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})):ℝ–1-1-onto→(ℝ ↑m 1o) ∧ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦((abs ∘ − ) ↾ (ℝ × ℝ))𝑧) = (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))‘𝑦)(ℝn‘1o)((𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))‘𝑧))))
2012, 19mpbi 229 . . . . . . 7 ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})):ℝ–1-1-onto→(ℝ ↑m 1o) ∧ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦((abs ∘ − ) ↾ (ℝ × ℝ))𝑧) = (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))‘𝑦)(ℝn‘1o)((𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))‘𝑧)))
2120simpli 484 . . . . . 6 (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})):ℝ–1-1-onto→(ℝ ↑m 1o)
22 f1of 6784 . . . . . 6 ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})):ℝ–1-1-onto→(ℝ ↑m 1o) → (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})):ℝ⟶(ℝ ↑m 1o))
23 frn 6675 . . . . . 6 ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})):ℝ⟶(ℝ ↑m 1o) → ran (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ⊆ (ℝ ↑m 1o))
2421, 22, 23mp2b 10 . . . . 5 ran (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ⊆ (ℝ ↑m 1o)
254, 24sstri 3953 . . . 4 ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ⊆ (ℝ ↑m 1o)
2625a1i 11 . . 3 (𝑌 ⊆ ℝ → ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ⊆ (ℝ ↑m 1o))
27 eqid 2736 . . . 4 ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) = ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))
28 eqid 2736 . . . 4 (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) = (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))
29 eqid 2736 . . . 4 (MetOpen‘(ℝn‘1o)) = (MetOpen‘(ℝn‘1o))
3014, 27, 28, 29rrnheibor 36296 . . 3 ((1o ∈ Fin ∧ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ⊆ (ℝ ↑m 1o)) → ((MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ∈ Comp ↔ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ∈ (Clsd‘(MetOpen‘(ℝn‘1o))) ∧ ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (Bnd‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
313, 26, 30sylancr 587 . 2 (𝑌 ⊆ ℝ → ((MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ∈ Comp ↔ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ∈ (Clsd‘(MetOpen‘(ℝn‘1o))) ∧ ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (Bnd‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
32 reheibor.2 . . . . . . 7 𝑀 = ((abs ∘ − ) ↾ (𝑌 × 𝑌))
33 cnxmet 24136 . . . . . . . 8 (abs ∘ − ) ∈ (∞Met‘ℂ)
34 id 22 . . . . . . . . 9 (𝑌 ⊆ ℝ → 𝑌 ⊆ ℝ)
35 ax-resscn 11108 . . . . . . . . 9 ℝ ⊆ ℂ
3634, 35sstrdi 3956 . . . . . . . 8 (𝑌 ⊆ ℝ → 𝑌 ⊆ ℂ)
37 xmetres2 23714 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑌 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
3833, 36, 37sylancr 587 . . . . . . 7 (𝑌 ⊆ ℝ → ((abs ∘ − ) ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
3932, 38eqeltrid 2842 . . . . . 6 (𝑌 ⊆ ℝ → 𝑀 ∈ (∞Met‘𝑌))
40 xmetres2 23714 . . . . . . 7 (((ℝn‘1o) ∈ (∞Met‘(ℝ ↑m 1o)) ∧ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ⊆ (ℝ ↑m 1o)) → ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (∞Met‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))
4117, 26, 40sylancr 587 . . . . . 6 (𝑌 ⊆ ℝ → ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (∞Met‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))
42 reheibor.3 . . . . . . 7 𝑇 = (MetOpen‘𝑀)
4342, 28ismtyhmeo 36264 . . . . . 6 ((𝑀 ∈ (∞Met‘𝑌) ∧ ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (∞Met‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) → (𝑀 Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ⊆ (𝑇Homeo(MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))))
4439, 41, 43syl2anc 584 . . . . 5 (𝑌 ⊆ ℝ → (𝑀 Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ⊆ (𝑇Homeo(MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))))
4513a1i 11 . . . . . . 7 (𝑌 ⊆ ℝ → ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ))
4617a1i 11 . . . . . . 7 (𝑌 ⊆ ℝ → (ℝn‘1o) ∈ (∞Met‘(ℝ ↑m 1o)))
4712a1i 11 . . . . . . 7 (𝑌 ⊆ ℝ → (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o)))
48 eqid 2736 . . . . . . . 8 ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) = ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)
49 eqid 2736 . . . . . . . 8 (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝑌 × 𝑌)) = (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝑌 × 𝑌))
5048, 49, 27ismtyres 36267 . . . . . . 7 (((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ (ℝn‘1o) ∈ (∞Met‘(ℝ ↑m 1o))) ∧ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o)) ∧ 𝑌 ⊆ ℝ)) → ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ↾ 𝑌) ∈ ((((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝑌 × 𝑌)) Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
5145, 46, 47, 34, 50syl22anc 837 . . . . . 6 (𝑌 ⊆ ℝ → ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ↾ 𝑌) ∈ ((((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝑌 × 𝑌)) Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
52 xpss12 5648 . . . . . . . . . 10 ((𝑌 ⊆ ℝ ∧ 𝑌 ⊆ ℝ) → (𝑌 × 𝑌) ⊆ (ℝ × ℝ))
5352anidms 567 . . . . . . . . 9 (𝑌 ⊆ ℝ → (𝑌 × 𝑌) ⊆ (ℝ × ℝ))
5453resabs1d 5968 . . . . . . . 8 (𝑌 ⊆ ℝ → (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝑌 × 𝑌)) = ((abs ∘ − ) ↾ (𝑌 × 𝑌)))
5554, 32eqtr4di 2794 . . . . . . 7 (𝑌 ⊆ ℝ → (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝑌 × 𝑌)) = 𝑀)
5655oveq1d 7372 . . . . . 6 (𝑌 ⊆ ℝ → ((((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝑌 × 𝑌)) Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) = (𝑀 Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
5751, 56eleqtrd 2840 . . . . 5 (𝑌 ⊆ ℝ → ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ↾ 𝑌) ∈ (𝑀 Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
5844, 57sseldd 3945 . . . 4 (𝑌 ⊆ ℝ → ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ↾ 𝑌) ∈ (𝑇Homeo(MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))))
59 hmphi 23128 . . . 4 (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ↾ 𝑌) ∈ (𝑇Homeo(MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))) → 𝑇 ≃ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
6058, 59syl 17 . . 3 (𝑌 ⊆ ℝ → 𝑇 ≃ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
61 cmphmph 23139 . . . 4 (𝑇 ≃ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) → (𝑇 ∈ Comp → (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ∈ Comp))
62 hmphsym 23133 . . . . 5 (𝑇 ≃ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) → (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ≃ 𝑇)
63 cmphmph 23139 . . . . 5 ((MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ≃ 𝑇 → ((MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ∈ Comp → 𝑇 ∈ Comp))
6462, 63syl 17 . . . 4 (𝑇 ≃ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) → ((MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ∈ Comp → 𝑇 ∈ Comp))
6561, 64impbid 211 . . 3 (𝑇 ≃ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) → (𝑇 ∈ Comp ↔ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ∈ Comp))
6660, 65syl 17 . 2 (𝑌 ⊆ ℝ → (𝑇 ∈ Comp ↔ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ∈ Comp))
67 reheibor.4 . . . . . . . 8 𝑈 = (topGen‘ran (,))
68 eqid 2736 . . . . . . . . 9 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
696, 68tgioo 24159 . . . . . . . 8 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
7067, 69eqtri 2764 . . . . . . 7 𝑈 = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
7170, 29ismtyhmeo 36264 . . . . . 6 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ (ℝn‘1o) ∈ (∞Met‘(ℝ ↑m 1o))) → (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o)) ⊆ (𝑈Homeo(MetOpen‘(ℝn‘1o))))
7213, 17, 71mp2an 690 . . . . 5 (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o)) ⊆ (𝑈Homeo(MetOpen‘(ℝn‘1o)))
7372, 12sselii 3941 . . . 4 (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (𝑈Homeo(MetOpen‘(ℝn‘1o)))
74 retopon 24127 . . . . . . 7 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
7567, 74eqeltri 2834 . . . . . 6 𝑈 ∈ (TopOn‘ℝ)
7675toponunii 22265 . . . . 5 ℝ = 𝑈
7776hmeocld 23118 . . . 4 (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (𝑈Homeo(MetOpen‘(ℝn‘1o))) ∧ 𝑌 ⊆ ℝ) → (𝑌 ∈ (Clsd‘𝑈) ↔ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ∈ (Clsd‘(MetOpen‘(ℝn‘1o)))))
7873, 34, 77sylancr 587 . . 3 (𝑌 ⊆ ℝ → (𝑌 ∈ (Clsd‘𝑈) ↔ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ∈ (Clsd‘(MetOpen‘(ℝn‘1o)))))
79 ismtybnd 36266 . . . 4 ((𝑀 ∈ (∞Met‘𝑌) ∧ ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (∞Met‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)) ∧ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ↾ 𝑌) ∈ (𝑀 Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))) → (𝑀 ∈ (Bnd‘𝑌) ↔ ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (Bnd‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))
8039, 41, 57, 79syl3anc 1371 . . 3 (𝑌 ⊆ ℝ → (𝑀 ∈ (Bnd‘𝑌) ↔ ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (Bnd‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))
8178, 80anbi12d 631 . 2 (𝑌 ⊆ ℝ → ((𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌)) ↔ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ∈ (Clsd‘(MetOpen‘(ℝn‘1o))) ∧ ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (Bnd‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
8231, 66, 813bitr4d 310 1 (𝑌 ⊆ ℝ → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  Vcvv 3445  wss 3910  c0 4282  {csn 4586   class class class wbr 5105  cmpt 5188   × cxp 5631  ran crn 5634  cres 5635  cima 5636  ccom 5637  wf 6492  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  1oc1o 8405  m cmap 8765  Fincfn 8883  cc 11049  cr 11050  cmin 11385  (,)cioo 13264  abscabs 15119  topGenctg 17319  ∞Metcxmet 20781  Metcmet 20782  MetOpencmopn 20786  TopOnctopon 22259  Clsdccld 22367  Compccmp 22737  Homeochmeo 23104  chmph 23105  Bndcbnd 36226   Ismty cismty 36257  ncrrn 36284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cc 10371  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-omul 8417  df-er 8648  df-ec 8650  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-gz 16802  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-topgen 17325  df-prds 17329  df-pws 17331  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-cn 22578  df-lm 22580  df-haus 22666  df-cmp 22738  df-hmeo 23106  df-hmph 23107  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-cfil 24619  df-cau 24620  df-cmet 24621  df-totbnd 36227  df-bnd 36238  df-ismty 36258  df-rrn 36285
This theorem is referenced by:  icccmpALT  36300
  Copyright terms: Public domain W3C validator