Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reheibor Structured version   Visualization version   GIF version

Theorem reheibor 37887
Description: Heine-Borel theorem for real numbers. A subset of is compact iff it is closed and bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
reheibor.2 𝑀 = ((abs ∘ − ) ↾ (𝑌 × 𝑌))
reheibor.3 𝑇 = (MetOpen‘𝑀)
reheibor.4 𝑈 = (topGen‘ran (,))
Assertion
Ref Expression
reheibor (𝑌 ⊆ ℝ → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌))))

Proof of Theorem reheibor
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df1o2 8392 . . . 4 1o = {∅}
2 snfi 8965 . . . 4 {∅} ∈ Fin
31, 2eqeltri 2827 . . 3 1o ∈ Fin
4 imassrn 6019 . . . . 5 ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ⊆ ran (𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))
5 0ex 5243 . . . . . . . . . 10 ∅ ∈ V
6 eqid 2731 . . . . . . . . . . 11 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
7 eqid 2731 . . . . . . . . . . 11 (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) = (𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))
86, 7ismrer1 37886 . . . . . . . . . 10 (∅ ∈ V → (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘{∅})))
95, 8ax-mp 5 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘{∅}))
101fveq2i 6825 . . . . . . . . . 10 (ℝn‘1o) = (ℝn‘{∅})
1110oveq2i 7357 . . . . . . . . 9 (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o)) = (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘{∅}))
129, 11eleqtrri 2830 . . . . . . . 8 (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o))
136rexmet 24706 . . . . . . . . 9 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
14 eqid 2731 . . . . . . . . . . 11 (ℝ ↑m 1o) = (ℝ ↑m 1o)
1514rrnmet 37877 . . . . . . . . . 10 (1o ∈ Fin → (ℝn‘1o) ∈ (Met‘(ℝ ↑m 1o)))
16 metxmet 24249 . . . . . . . . . 10 ((ℝn‘1o) ∈ (Met‘(ℝ ↑m 1o)) → (ℝn‘1o) ∈ (∞Met‘(ℝ ↑m 1o)))
173, 15, 16mp2b 10 . . . . . . . . 9 (ℝn‘1o) ∈ (∞Met‘(ℝ ↑m 1o))
18 isismty 37849 . . . . . . . . 9 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ (ℝn‘1o) ∈ (∞Met‘(ℝ ↑m 1o))) → ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o)) ↔ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})):ℝ–1-1-onto→(ℝ ↑m 1o) ∧ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦((abs ∘ − ) ↾ (ℝ × ℝ))𝑧) = (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))‘𝑦)(ℝn‘1o)((𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))‘𝑧)))))
1913, 17, 18mp2an 692 . . . . . . . 8 ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o)) ↔ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})):ℝ–1-1-onto→(ℝ ↑m 1o) ∧ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦((abs ∘ − ) ↾ (ℝ × ℝ))𝑧) = (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))‘𝑦)(ℝn‘1o)((𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))‘𝑧))))
2012, 19mpbi 230 . . . . . . 7 ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})):ℝ–1-1-onto→(ℝ ↑m 1o) ∧ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦((abs ∘ − ) ↾ (ℝ × ℝ))𝑧) = (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))‘𝑦)(ℝn‘1o)((𝑥 ∈ ℝ ↦ ({∅} × {𝑥}))‘𝑧)))
2120simpli 483 . . . . . 6 (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})):ℝ–1-1-onto→(ℝ ↑m 1o)
22 f1of 6763 . . . . . 6 ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})):ℝ–1-1-onto→(ℝ ↑m 1o) → (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})):ℝ⟶(ℝ ↑m 1o))
23 frn 6658 . . . . . 6 ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})):ℝ⟶(ℝ ↑m 1o) → ran (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ⊆ (ℝ ↑m 1o))
2421, 22, 23mp2b 10 . . . . 5 ran (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ⊆ (ℝ ↑m 1o)
254, 24sstri 3939 . . . 4 ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ⊆ (ℝ ↑m 1o)
2625a1i 11 . . 3 (𝑌 ⊆ ℝ → ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ⊆ (ℝ ↑m 1o))
27 eqid 2731 . . . 4 ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) = ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))
28 eqid 2731 . . . 4 (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) = (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))
29 eqid 2731 . . . 4 (MetOpen‘(ℝn‘1o)) = (MetOpen‘(ℝn‘1o))
3014, 27, 28, 29rrnheibor 37885 . . 3 ((1o ∈ Fin ∧ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ⊆ (ℝ ↑m 1o)) → ((MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ∈ Comp ↔ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ∈ (Clsd‘(MetOpen‘(ℝn‘1o))) ∧ ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (Bnd‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
313, 26, 30sylancr 587 . 2 (𝑌 ⊆ ℝ → ((MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ∈ Comp ↔ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ∈ (Clsd‘(MetOpen‘(ℝn‘1o))) ∧ ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (Bnd‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
32 reheibor.2 . . . . . . 7 𝑀 = ((abs ∘ − ) ↾ (𝑌 × 𝑌))
33 cnxmet 24687 . . . . . . . 8 (abs ∘ − ) ∈ (∞Met‘ℂ)
34 id 22 . . . . . . . . 9 (𝑌 ⊆ ℝ → 𝑌 ⊆ ℝ)
35 ax-resscn 11063 . . . . . . . . 9 ℝ ⊆ ℂ
3634, 35sstrdi 3942 . . . . . . . 8 (𝑌 ⊆ ℝ → 𝑌 ⊆ ℂ)
37 xmetres2 24276 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑌 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
3833, 36, 37sylancr 587 . . . . . . 7 (𝑌 ⊆ ℝ → ((abs ∘ − ) ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
3932, 38eqeltrid 2835 . . . . . 6 (𝑌 ⊆ ℝ → 𝑀 ∈ (∞Met‘𝑌))
40 xmetres2 24276 . . . . . . 7 (((ℝn‘1o) ∈ (∞Met‘(ℝ ↑m 1o)) ∧ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ⊆ (ℝ ↑m 1o)) → ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (∞Met‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))
4117, 26, 40sylancr 587 . . . . . 6 (𝑌 ⊆ ℝ → ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (∞Met‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))
42 reheibor.3 . . . . . . 7 𝑇 = (MetOpen‘𝑀)
4342, 28ismtyhmeo 37853 . . . . . 6 ((𝑀 ∈ (∞Met‘𝑌) ∧ ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (∞Met‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) → (𝑀 Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ⊆ (𝑇Homeo(MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))))
4439, 41, 43syl2anc 584 . . . . 5 (𝑌 ⊆ ℝ → (𝑀 Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ⊆ (𝑇Homeo(MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))))
4513a1i 11 . . . . . . 7 (𝑌 ⊆ ℝ → ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ))
4617a1i 11 . . . . . . 7 (𝑌 ⊆ ℝ → (ℝn‘1o) ∈ (∞Met‘(ℝ ↑m 1o)))
4712a1i 11 . . . . . . 7 (𝑌 ⊆ ℝ → (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o)))
48 eqid 2731 . . . . . . . 8 ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) = ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)
49 eqid 2731 . . . . . . . 8 (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝑌 × 𝑌)) = (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝑌 × 𝑌))
5048, 49, 27ismtyres 37856 . . . . . . 7 (((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ (ℝn‘1o) ∈ (∞Met‘(ℝ ↑m 1o))) ∧ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o)) ∧ 𝑌 ⊆ ℝ)) → ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ↾ 𝑌) ∈ ((((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝑌 × 𝑌)) Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
5145, 46, 47, 34, 50syl22anc 838 . . . . . 6 (𝑌 ⊆ ℝ → ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ↾ 𝑌) ∈ ((((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝑌 × 𝑌)) Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
52 xpss12 5629 . . . . . . . . . 10 ((𝑌 ⊆ ℝ ∧ 𝑌 ⊆ ℝ) → (𝑌 × 𝑌) ⊆ (ℝ × ℝ))
5352anidms 566 . . . . . . . . 9 (𝑌 ⊆ ℝ → (𝑌 × 𝑌) ⊆ (ℝ × ℝ))
5453resabs1d 5956 . . . . . . . 8 (𝑌 ⊆ ℝ → (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝑌 × 𝑌)) = ((abs ∘ − ) ↾ (𝑌 × 𝑌)))
5554, 32eqtr4di 2784 . . . . . . 7 (𝑌 ⊆ ℝ → (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝑌 × 𝑌)) = 𝑀)
5655oveq1d 7361 . . . . . 6 (𝑌 ⊆ ℝ → ((((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝑌 × 𝑌)) Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) = (𝑀 Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
5751, 56eleqtrd 2833 . . . . 5 (𝑌 ⊆ ℝ → ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ↾ 𝑌) ∈ (𝑀 Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
5844, 57sseldd 3930 . . . 4 (𝑌 ⊆ ℝ → ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ↾ 𝑌) ∈ (𝑇Homeo(MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))))
59 hmphi 23692 . . . 4 (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ↾ 𝑌) ∈ (𝑇Homeo(MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))) → 𝑇 ≃ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
6058, 59syl 17 . . 3 (𝑌 ⊆ ℝ → 𝑇 ≃ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
61 cmphmph 23703 . . . 4 (𝑇 ≃ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) → (𝑇 ∈ Comp → (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ∈ Comp))
62 hmphsym 23697 . . . . 5 (𝑇 ≃ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) → (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ≃ 𝑇)
63 cmphmph 23703 . . . . 5 ((MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ≃ 𝑇 → ((MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ∈ Comp → 𝑇 ∈ Comp))
6462, 63syl 17 . . . 4 (𝑇 ≃ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) → ((MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ∈ Comp → 𝑇 ∈ Comp))
6561, 64impbid 212 . . 3 (𝑇 ≃ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) → (𝑇 ∈ Comp ↔ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ∈ Comp))
6660, 65syl 17 . 2 (𝑌 ⊆ ℝ → (𝑇 ∈ Comp ↔ (MetOpen‘((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))) ∈ Comp))
67 reheibor.4 . . . . . . . 8 𝑈 = (topGen‘ran (,))
68 eqid 2731 . . . . . . . . 9 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
696, 68tgioo 24711 . . . . . . . 8 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
7067, 69eqtri 2754 . . . . . . 7 𝑈 = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
7170, 29ismtyhmeo 37853 . . . . . 6 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ (ℝn‘1o) ∈ (∞Met‘(ℝ ↑m 1o))) → (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o)) ⊆ (𝑈Homeo(MetOpen‘(ℝn‘1o))))
7213, 17, 71mp2an 692 . . . . 5 (((abs ∘ − ) ↾ (ℝ × ℝ)) Ismty (ℝn‘1o)) ⊆ (𝑈Homeo(MetOpen‘(ℝn‘1o)))
7372, 12sselii 3926 . . . 4 (𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (𝑈Homeo(MetOpen‘(ℝn‘1o)))
74 retopon 24678 . . . . . . 7 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
7567, 74eqeltri 2827 . . . . . 6 𝑈 ∈ (TopOn‘ℝ)
7675toponunii 22831 . . . . 5 ℝ = 𝑈
7776hmeocld 23682 . . . 4 (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ∈ (𝑈Homeo(MetOpen‘(ℝn‘1o))) ∧ 𝑌 ⊆ ℝ) → (𝑌 ∈ (Clsd‘𝑈) ↔ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ∈ (Clsd‘(MetOpen‘(ℝn‘1o)))))
7873, 34, 77sylancr 587 . . 3 (𝑌 ⊆ ℝ → (𝑌 ∈ (Clsd‘𝑈) ↔ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ∈ (Clsd‘(MetOpen‘(ℝn‘1o)))))
79 ismtybnd 37855 . . . 4 ((𝑀 ∈ (∞Met‘𝑌) ∧ ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (∞Met‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)) ∧ ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) ↾ 𝑌) ∈ (𝑀 Ismty ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))) → (𝑀 ∈ (Bnd‘𝑌) ↔ ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (Bnd‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))
8039, 41, 57, 79syl3anc 1373 . . 3 (𝑌 ⊆ ℝ → (𝑀 ∈ (Bnd‘𝑌) ↔ ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (Bnd‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))))
8178, 80anbi12d 632 . 2 (𝑌 ⊆ ℝ → ((𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌)) ↔ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) ∈ (Clsd‘(MetOpen‘(ℝn‘1o))) ∧ ((ℝn‘1o) ↾ (((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌) × ((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌))) ∈ (Bnd‘((𝑥 ∈ ℝ ↦ ({∅} × {𝑥})) “ 𝑌)))))
8231, 66, 813bitr4d 311 1 (𝑌 ⊆ ℝ → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  wss 3897  c0 4280  {csn 4573   class class class wbr 5089  cmpt 5170   × cxp 5612  ran crn 5615  cres 5616  cima 5617  ccom 5618  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  1oc1o 8378  m cmap 8750  Fincfn 8869  cc 11004  cr 11005  cmin 11344  (,)cioo 13245  abscabs 15141  topGenctg 17341  ∞Metcxmet 21276  Metcmet 21277  MetOpencmopn 21281  TopOnctopon 22825  Clsdccld 22931  Compccmp 23301  Homeochmeo 23668  chmph 23669  Bndcbnd 37815   Ismty cismty 37846  ncrrn 37873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cc 10326  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-er 8622  df-ec 8624  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-acn 9835  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-gz 16842  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-topgen 17347  df-prds 17351  df-pws 17353  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-cn 23142  df-lm 23144  df-haus 23230  df-cmp 23302  df-hmeo 23670  df-hmph 23671  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-cfil 25182  df-cau 25183  df-cmet 25184  df-totbnd 37816  df-bnd 37827  df-ismty 37847  df-rrn 37874
This theorem is referenced by:  icccmpALT  37889
  Copyright terms: Public domain W3C validator