Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0hmph Structured version   Visualization version   GIF version

Theorem xrge0hmph 33880
Description: The extended nonnegative reals are homeomorphic to the closed unit interval. (Contributed by Thierry Arnoux, 24-Mar-2017.)
Assertion
Ref Expression
xrge0hmph II ≃ ((ordTop‘ ≤ ) ↾t (0[,]+∞))

Proof of Theorem xrge0hmph
StepHypRef Expression
1 eqid 2740 . . . 4 (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))
2 eqid 2740 . . . 4 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
31, 2iccpnfhmeo 24997 . . 3 ((𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))) Isom < , < ((0[,]1), (0[,]+∞)) ∧ (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))) ∈ (IIHomeo((ordTop‘ ≤ ) ↾t (0[,]+∞))))
43simpri 485 . 2 (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))) ∈ (IIHomeo((ordTop‘ ≤ ) ↾t (0[,]+∞)))
5 hmphi 23808 . 2 ((𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))) ∈ (IIHomeo((ordTop‘ ≤ ) ↾t (0[,]+∞))) → II ≃ ((ordTop‘ ≤ ) ↾t (0[,]+∞)))
64, 5ax-mp 5 1 II ≃ ((ordTop‘ ≤ ) ↾t (0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  ifcif 4548   class class class wbr 5166  cmpt 5249  cfv 6575   Isom wiso 6576  (class class class)co 7450  0cc0 11186  1c1 11187  +∞cpnf 11323   < clt 11326  cle 11327  cmin 11522   / cdiv 11949  [,]cicc 13412  t crest 17482  ordTopcordt 17561  Homeochmeo 23784  chmph 23785  IIcii 24922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263  ax-pre-sup 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-isom 6584  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-1st 8032  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-1o 8524  df-2o 8525  df-er 8765  df-map 8888  df-en 9006  df-dom 9007  df-sdom 9008  df-fin 9009  df-fi 9482  df-sup 9513  df-inf 9514  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-div 11950  df-nn 12296  df-2 12358  df-3 12359  df-4 12360  df-5 12361  df-6 12362  df-7 12363  df-8 12364  df-9 12365  df-n0 12556  df-z 12642  df-dec 12761  df-uz 12906  df-q 13016  df-rp 13060  df-xneg 13177  df-xadd 13178  df-xmul 13179  df-ioo 13413  df-ioc 13414  df-ico 13415  df-icc 13416  df-fz 13570  df-seq 14055  df-exp 14115  df-cj 15150  df-re 15151  df-im 15152  df-sqrt 15286  df-abs 15287  df-struct 17196  df-slot 17231  df-ndx 17243  df-base 17261  df-plusg 17326  df-mulr 17327  df-starv 17328  df-tset 17332  df-ple 17333  df-ds 17335  df-unif 17336  df-rest 17484  df-topn 17485  df-topgen 17505  df-ordt 17563  df-ps 18638  df-tsr 18639  df-psmet 21381  df-xmet 21382  df-met 21383  df-bl 21384  df-mopn 21385  df-cnfld 21390  df-top 22923  df-topon 22940  df-topsp 22962  df-bases 22976  df-cn 23258  df-hmeo 23786  df-hmph 23787  df-xms 24353  df-ms 24354  df-ii 24924
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator