MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indishmph Structured version   Visualization version   GIF version

Theorem indishmph 23806
Description: Equinumerous sets equipped with their indiscrete topologies are homeomorphic (which means in that particular case that a segment is homeomorphic to a circle contrary to what Wikipedia claims). (Contributed by FL, 17-Aug-2008.) (Proof shortened by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
indishmph (𝐴𝐵 → {∅, 𝐴} ≃ {∅, 𝐵})

Proof of Theorem indishmph
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 bren 8995 . 2 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
2 f1of 6848 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴𝐵)
3 f1odm 6852 . . . . . . . . . 10 (𝑓:𝐴1-1-onto𝐵 → dom 𝑓 = 𝐴)
4 vex 3484 . . . . . . . . . . 11 𝑓 ∈ V
54dmex 7931 . . . . . . . . . 10 dom 𝑓 ∈ V
63, 5eqeltrrdi 2850 . . . . . . . . 9 (𝑓:𝐴1-1-onto𝐵𝐴 ∈ V)
7 f1ofo 6855 . . . . . . . . 9 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴onto𝐵)
8 focdmex 7980 . . . . . . . . 9 (𝐴 ∈ V → (𝑓:𝐴onto𝐵𝐵 ∈ V))
96, 7, 8sylc 65 . . . . . . . 8 (𝑓:𝐴1-1-onto𝐵𝐵 ∈ V)
109, 6elmapd 8880 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵 → (𝑓 ∈ (𝐵m 𝐴) ↔ 𝑓:𝐴𝐵))
112, 10mpbird 257 . . . . . 6 (𝑓:𝐴1-1-onto𝐵𝑓 ∈ (𝐵m 𝐴))
12 indistopon 23008 . . . . . . . 8 (𝐴 ∈ V → {∅, 𝐴} ∈ (TopOn‘𝐴))
136, 12syl 17 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵 → {∅, 𝐴} ∈ (TopOn‘𝐴))
14 cnindis 23300 . . . . . . 7 (({∅, 𝐴} ∈ (TopOn‘𝐴) ∧ 𝐵 ∈ V) → ({∅, 𝐴} Cn {∅, 𝐵}) = (𝐵m 𝐴))
1513, 9, 14syl2anc 584 . . . . . 6 (𝑓:𝐴1-1-onto𝐵 → ({∅, 𝐴} Cn {∅, 𝐵}) = (𝐵m 𝐴))
1611, 15eleqtrrd 2844 . . . . 5 (𝑓:𝐴1-1-onto𝐵𝑓 ∈ ({∅, 𝐴} Cn {∅, 𝐵}))
17 f1ocnv 6860 . . . . . . . 8 (𝑓:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐴)
18 f1of 6848 . . . . . . . 8 (𝑓:𝐵1-1-onto𝐴𝑓:𝐵𝐴)
1917, 18syl 17 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵𝑓:𝐵𝐴)
206, 9elmapd 8880 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵 → (𝑓 ∈ (𝐴m 𝐵) ↔ 𝑓:𝐵𝐴))
2119, 20mpbird 257 . . . . . 6 (𝑓:𝐴1-1-onto𝐵𝑓 ∈ (𝐴m 𝐵))
22 indistopon 23008 . . . . . . . 8 (𝐵 ∈ V → {∅, 𝐵} ∈ (TopOn‘𝐵))
239, 22syl 17 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵 → {∅, 𝐵} ∈ (TopOn‘𝐵))
24 cnindis 23300 . . . . . . 7 (({∅, 𝐵} ∈ (TopOn‘𝐵) ∧ 𝐴 ∈ V) → ({∅, 𝐵} Cn {∅, 𝐴}) = (𝐴m 𝐵))
2523, 6, 24syl2anc 584 . . . . . 6 (𝑓:𝐴1-1-onto𝐵 → ({∅, 𝐵} Cn {∅, 𝐴}) = (𝐴m 𝐵))
2621, 25eleqtrrd 2844 . . . . 5 (𝑓:𝐴1-1-onto𝐵𝑓 ∈ ({∅, 𝐵} Cn {∅, 𝐴}))
27 ishmeo 23767 . . . . 5 (𝑓 ∈ ({∅, 𝐴}Homeo{∅, 𝐵}) ↔ (𝑓 ∈ ({∅, 𝐴} Cn {∅, 𝐵}) ∧ 𝑓 ∈ ({∅, 𝐵} Cn {∅, 𝐴})))
2816, 26, 27sylanbrc 583 . . . 4 (𝑓:𝐴1-1-onto𝐵𝑓 ∈ ({∅, 𝐴}Homeo{∅, 𝐵}))
29 hmphi 23785 . . . 4 (𝑓 ∈ ({∅, 𝐴}Homeo{∅, 𝐵}) → {∅, 𝐴} ≃ {∅, 𝐵})
3028, 29syl 17 . . 3 (𝑓:𝐴1-1-onto𝐵 → {∅, 𝐴} ≃ {∅, 𝐵})
3130exlimiv 1930 . 2 (∃𝑓 𝑓:𝐴1-1-onto𝐵 → {∅, 𝐴} ≃ {∅, 𝐵})
321, 31sylbi 217 1 (𝐴𝐵 → {∅, 𝐴} ≃ {∅, 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wex 1779  wcel 2108  Vcvv 3480  c0 4333  {cpr 4628   class class class wbr 5143  ccnv 5684  dom cdm 5685  wf 6557  ontowfo 6559  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  m cmap 8866  cen 8982  TopOnctopon 22916   Cn ccn 23232  Homeochmeo 23761  chmph 23762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-1o 8506  df-map 8868  df-en 8986  df-top 22900  df-topon 22917  df-cn 23235  df-hmeo 23763  df-hmph 23764
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator