Step | Hyp | Ref
| Expression |
1 | | bren 8701 |
. 2
⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
2 | | f1of 6700 |
. . . . . . 7
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴⟶𝐵) |
3 | | f1odm 6704 |
. . . . . . . . . 10
⊢ (𝑓:𝐴–1-1-onto→𝐵 → dom 𝑓 = 𝐴) |
4 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑓 ∈ V |
5 | 4 | dmex 7732 |
. . . . . . . . . 10
⊢ dom 𝑓 ∈ V |
6 | 3, 5 | eqeltrrdi 2848 |
. . . . . . . . 9
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐴 ∈ V) |
7 | | f1ofo 6707 |
. . . . . . . . 9
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴–onto→𝐵) |
8 | | fornex 7772 |
. . . . . . . . 9
⊢ (𝐴 ∈ V → (𝑓:𝐴–onto→𝐵 → 𝐵 ∈ V)) |
9 | 6, 7, 8 | sylc 65 |
. . . . . . . 8
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐵 ∈ V) |
10 | 9, 6 | elmapd 8587 |
. . . . . . 7
⊢ (𝑓:𝐴–1-1-onto→𝐵 → (𝑓 ∈ (𝐵 ↑m 𝐴) ↔ 𝑓:𝐴⟶𝐵)) |
11 | 2, 10 | mpbird 256 |
. . . . . 6
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓 ∈ (𝐵 ↑m 𝐴)) |
12 | | indistopon 22059 |
. . . . . . . 8
⊢ (𝐴 ∈ V → {∅, 𝐴} ∈ (TopOn‘𝐴)) |
13 | 6, 12 | syl 17 |
. . . . . . 7
⊢ (𝑓:𝐴–1-1-onto→𝐵 → {∅, 𝐴} ∈ (TopOn‘𝐴)) |
14 | | cnindis 22351 |
. . . . . . 7
⊢
(({∅, 𝐴}
∈ (TopOn‘𝐴)
∧ 𝐵 ∈ V) →
({∅, 𝐴} Cn {∅,
𝐵}) = (𝐵 ↑m 𝐴)) |
15 | 13, 9, 14 | syl2anc 583 |
. . . . . 6
⊢ (𝑓:𝐴–1-1-onto→𝐵 → ({∅, 𝐴} Cn {∅, 𝐵}) = (𝐵 ↑m 𝐴)) |
16 | 11, 15 | eleqtrrd 2842 |
. . . . 5
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓 ∈ ({∅, 𝐴} Cn {∅, 𝐵})) |
17 | | f1ocnv 6712 |
. . . . . . . 8
⊢ (𝑓:𝐴–1-1-onto→𝐵 → ◡𝑓:𝐵–1-1-onto→𝐴) |
18 | | f1of 6700 |
. . . . . . . 8
⊢ (◡𝑓:𝐵–1-1-onto→𝐴 → ◡𝑓:𝐵⟶𝐴) |
19 | 17, 18 | syl 17 |
. . . . . . 7
⊢ (𝑓:𝐴–1-1-onto→𝐵 → ◡𝑓:𝐵⟶𝐴) |
20 | 6, 9 | elmapd 8587 |
. . . . . . 7
⊢ (𝑓:𝐴–1-1-onto→𝐵 → (◡𝑓 ∈ (𝐴 ↑m 𝐵) ↔ ◡𝑓:𝐵⟶𝐴)) |
21 | 19, 20 | mpbird 256 |
. . . . . 6
⊢ (𝑓:𝐴–1-1-onto→𝐵 → ◡𝑓 ∈ (𝐴 ↑m 𝐵)) |
22 | | indistopon 22059 |
. . . . . . . 8
⊢ (𝐵 ∈ V → {∅, 𝐵} ∈ (TopOn‘𝐵)) |
23 | 9, 22 | syl 17 |
. . . . . . 7
⊢ (𝑓:𝐴–1-1-onto→𝐵 → {∅, 𝐵} ∈ (TopOn‘𝐵)) |
24 | | cnindis 22351 |
. . . . . . 7
⊢
(({∅, 𝐵}
∈ (TopOn‘𝐵)
∧ 𝐴 ∈ V) →
({∅, 𝐵} Cn {∅,
𝐴}) = (𝐴 ↑m 𝐵)) |
25 | 23, 6, 24 | syl2anc 583 |
. . . . . 6
⊢ (𝑓:𝐴–1-1-onto→𝐵 → ({∅, 𝐵} Cn {∅, 𝐴}) = (𝐴 ↑m 𝐵)) |
26 | 21, 25 | eleqtrrd 2842 |
. . . . 5
⊢ (𝑓:𝐴–1-1-onto→𝐵 → ◡𝑓 ∈ ({∅, 𝐵} Cn {∅, 𝐴})) |
27 | | ishmeo 22818 |
. . . . 5
⊢ (𝑓 ∈ ({∅, 𝐴}Homeo{∅, 𝐵}) ↔ (𝑓 ∈ ({∅, 𝐴} Cn {∅, 𝐵}) ∧ ◡𝑓 ∈ ({∅, 𝐵} Cn {∅, 𝐴}))) |
28 | 16, 26, 27 | sylanbrc 582 |
. . . 4
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓 ∈ ({∅, 𝐴}Homeo{∅, 𝐵})) |
29 | | hmphi 22836 |
. . . 4
⊢ (𝑓 ∈ ({∅, 𝐴}Homeo{∅, 𝐵}) → {∅, 𝐴} ≃ {∅, 𝐵}) |
30 | 28, 29 | syl 17 |
. . 3
⊢ (𝑓:𝐴–1-1-onto→𝐵 → {∅, 𝐴} ≃ {∅, 𝐵}) |
31 | 30 | exlimiv 1934 |
. 2
⊢
(∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → {∅, 𝐴} ≃ {∅, 𝐵}) |
32 | 1, 31 | sylbi 216 |
1
⊢ (𝐴 ≈ 𝐵 → {∅, 𝐴} ≃ {∅, 𝐵}) |