| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | bren 8995 | . 2
⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) | 
| 2 |  | f1of 6848 | . . . . . . 7
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴⟶𝐵) | 
| 3 |  | f1odm 6852 | . . . . . . . . . 10
⊢ (𝑓:𝐴–1-1-onto→𝐵 → dom 𝑓 = 𝐴) | 
| 4 |  | vex 3484 | . . . . . . . . . . 11
⊢ 𝑓 ∈ V | 
| 5 | 4 | dmex 7931 | . . . . . . . . . 10
⊢ dom 𝑓 ∈ V | 
| 6 | 3, 5 | eqeltrrdi 2850 | . . . . . . . . 9
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐴 ∈ V) | 
| 7 |  | f1ofo 6855 | . . . . . . . . 9
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴–onto→𝐵) | 
| 8 |  | focdmex 7980 | . . . . . . . . 9
⊢ (𝐴 ∈ V → (𝑓:𝐴–onto→𝐵 → 𝐵 ∈ V)) | 
| 9 | 6, 7, 8 | sylc 65 | . . . . . . . 8
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐵 ∈ V) | 
| 10 | 9, 6 | elmapd 8880 | . . . . . . 7
⊢ (𝑓:𝐴–1-1-onto→𝐵 → (𝑓 ∈ (𝐵 ↑m 𝐴) ↔ 𝑓:𝐴⟶𝐵)) | 
| 11 | 2, 10 | mpbird 257 | . . . . . 6
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓 ∈ (𝐵 ↑m 𝐴)) | 
| 12 |  | indistopon 23008 | . . . . . . . 8
⊢ (𝐴 ∈ V → {∅, 𝐴} ∈ (TopOn‘𝐴)) | 
| 13 | 6, 12 | syl 17 | . . . . . . 7
⊢ (𝑓:𝐴–1-1-onto→𝐵 → {∅, 𝐴} ∈ (TopOn‘𝐴)) | 
| 14 |  | cnindis 23300 | . . . . . . 7
⊢
(({∅, 𝐴}
∈ (TopOn‘𝐴)
∧ 𝐵 ∈ V) →
({∅, 𝐴} Cn {∅,
𝐵}) = (𝐵 ↑m 𝐴)) | 
| 15 | 13, 9, 14 | syl2anc 584 | . . . . . 6
⊢ (𝑓:𝐴–1-1-onto→𝐵 → ({∅, 𝐴} Cn {∅, 𝐵}) = (𝐵 ↑m 𝐴)) | 
| 16 | 11, 15 | eleqtrrd 2844 | . . . . 5
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓 ∈ ({∅, 𝐴} Cn {∅, 𝐵})) | 
| 17 |  | f1ocnv 6860 | . . . . . . . 8
⊢ (𝑓:𝐴–1-1-onto→𝐵 → ◡𝑓:𝐵–1-1-onto→𝐴) | 
| 18 |  | f1of 6848 | . . . . . . . 8
⊢ (◡𝑓:𝐵–1-1-onto→𝐴 → ◡𝑓:𝐵⟶𝐴) | 
| 19 | 17, 18 | syl 17 | . . . . . . 7
⊢ (𝑓:𝐴–1-1-onto→𝐵 → ◡𝑓:𝐵⟶𝐴) | 
| 20 | 6, 9 | elmapd 8880 | . . . . . . 7
⊢ (𝑓:𝐴–1-1-onto→𝐵 → (◡𝑓 ∈ (𝐴 ↑m 𝐵) ↔ ◡𝑓:𝐵⟶𝐴)) | 
| 21 | 19, 20 | mpbird 257 | . . . . . 6
⊢ (𝑓:𝐴–1-1-onto→𝐵 → ◡𝑓 ∈ (𝐴 ↑m 𝐵)) | 
| 22 |  | indistopon 23008 | . . . . . . . 8
⊢ (𝐵 ∈ V → {∅, 𝐵} ∈ (TopOn‘𝐵)) | 
| 23 | 9, 22 | syl 17 | . . . . . . 7
⊢ (𝑓:𝐴–1-1-onto→𝐵 → {∅, 𝐵} ∈ (TopOn‘𝐵)) | 
| 24 |  | cnindis 23300 | . . . . . . 7
⊢
(({∅, 𝐵}
∈ (TopOn‘𝐵)
∧ 𝐴 ∈ V) →
({∅, 𝐵} Cn {∅,
𝐴}) = (𝐴 ↑m 𝐵)) | 
| 25 | 23, 6, 24 | syl2anc 584 | . . . . . 6
⊢ (𝑓:𝐴–1-1-onto→𝐵 → ({∅, 𝐵} Cn {∅, 𝐴}) = (𝐴 ↑m 𝐵)) | 
| 26 | 21, 25 | eleqtrrd 2844 | . . . . 5
⊢ (𝑓:𝐴–1-1-onto→𝐵 → ◡𝑓 ∈ ({∅, 𝐵} Cn {∅, 𝐴})) | 
| 27 |  | ishmeo 23767 | . . . . 5
⊢ (𝑓 ∈ ({∅, 𝐴}Homeo{∅, 𝐵}) ↔ (𝑓 ∈ ({∅, 𝐴} Cn {∅, 𝐵}) ∧ ◡𝑓 ∈ ({∅, 𝐵} Cn {∅, 𝐴}))) | 
| 28 | 16, 26, 27 | sylanbrc 583 | . . . 4
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓 ∈ ({∅, 𝐴}Homeo{∅, 𝐵})) | 
| 29 |  | hmphi 23785 | . . . 4
⊢ (𝑓 ∈ ({∅, 𝐴}Homeo{∅, 𝐵}) → {∅, 𝐴} ≃ {∅, 𝐵}) | 
| 30 | 28, 29 | syl 17 | . . 3
⊢ (𝑓:𝐴–1-1-onto→𝐵 → {∅, 𝐴} ≃ {∅, 𝐵}) | 
| 31 | 30 | exlimiv 1930 | . 2
⊢
(∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → {∅, 𝐴} ≃ {∅, 𝐵}) | 
| 32 | 1, 31 | sylbi 217 | 1
⊢ (𝐴 ≈ 𝐵 → {∅, 𝐴} ≃ {∅, 𝐵}) |