MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indishmph Structured version   Visualization version   GIF version

Theorem indishmph 23827
Description: Equinumerous sets equipped with their indiscrete topologies are homeomorphic (which means in that particular case that a segment is homeomorphic to a circle contrary to what Wikipedia claims). (Contributed by FL, 17-Aug-2008.) (Proof shortened by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
indishmph (𝐴𝐵 → {∅, 𝐴} ≃ {∅, 𝐵})

Proof of Theorem indishmph
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 bren 9013 . 2 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
2 f1of 6862 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴𝐵)
3 f1odm 6866 . . . . . . . . . 10 (𝑓:𝐴1-1-onto𝐵 → dom 𝑓 = 𝐴)
4 vex 3492 . . . . . . . . . . 11 𝑓 ∈ V
54dmex 7949 . . . . . . . . . 10 dom 𝑓 ∈ V
63, 5eqeltrrdi 2853 . . . . . . . . 9 (𝑓:𝐴1-1-onto𝐵𝐴 ∈ V)
7 f1ofo 6869 . . . . . . . . 9 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴onto𝐵)
8 focdmex 7996 . . . . . . . . 9 (𝐴 ∈ V → (𝑓:𝐴onto𝐵𝐵 ∈ V))
96, 7, 8sylc 65 . . . . . . . 8 (𝑓:𝐴1-1-onto𝐵𝐵 ∈ V)
109, 6elmapd 8898 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵 → (𝑓 ∈ (𝐵m 𝐴) ↔ 𝑓:𝐴𝐵))
112, 10mpbird 257 . . . . . 6 (𝑓:𝐴1-1-onto𝐵𝑓 ∈ (𝐵m 𝐴))
12 indistopon 23029 . . . . . . . 8 (𝐴 ∈ V → {∅, 𝐴} ∈ (TopOn‘𝐴))
136, 12syl 17 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵 → {∅, 𝐴} ∈ (TopOn‘𝐴))
14 cnindis 23321 . . . . . . 7 (({∅, 𝐴} ∈ (TopOn‘𝐴) ∧ 𝐵 ∈ V) → ({∅, 𝐴} Cn {∅, 𝐵}) = (𝐵m 𝐴))
1513, 9, 14syl2anc 583 . . . . . 6 (𝑓:𝐴1-1-onto𝐵 → ({∅, 𝐴} Cn {∅, 𝐵}) = (𝐵m 𝐴))
1611, 15eleqtrrd 2847 . . . . 5 (𝑓:𝐴1-1-onto𝐵𝑓 ∈ ({∅, 𝐴} Cn {∅, 𝐵}))
17 f1ocnv 6874 . . . . . . . 8 (𝑓:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐴)
18 f1of 6862 . . . . . . . 8 (𝑓:𝐵1-1-onto𝐴𝑓:𝐵𝐴)
1917, 18syl 17 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵𝑓:𝐵𝐴)
206, 9elmapd 8898 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵 → (𝑓 ∈ (𝐴m 𝐵) ↔ 𝑓:𝐵𝐴))
2119, 20mpbird 257 . . . . . 6 (𝑓:𝐴1-1-onto𝐵𝑓 ∈ (𝐴m 𝐵))
22 indistopon 23029 . . . . . . . 8 (𝐵 ∈ V → {∅, 𝐵} ∈ (TopOn‘𝐵))
239, 22syl 17 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵 → {∅, 𝐵} ∈ (TopOn‘𝐵))
24 cnindis 23321 . . . . . . 7 (({∅, 𝐵} ∈ (TopOn‘𝐵) ∧ 𝐴 ∈ V) → ({∅, 𝐵} Cn {∅, 𝐴}) = (𝐴m 𝐵))
2523, 6, 24syl2anc 583 . . . . . 6 (𝑓:𝐴1-1-onto𝐵 → ({∅, 𝐵} Cn {∅, 𝐴}) = (𝐴m 𝐵))
2621, 25eleqtrrd 2847 . . . . 5 (𝑓:𝐴1-1-onto𝐵𝑓 ∈ ({∅, 𝐵} Cn {∅, 𝐴}))
27 ishmeo 23788 . . . . 5 (𝑓 ∈ ({∅, 𝐴}Homeo{∅, 𝐵}) ↔ (𝑓 ∈ ({∅, 𝐴} Cn {∅, 𝐵}) ∧ 𝑓 ∈ ({∅, 𝐵} Cn {∅, 𝐴})))
2816, 26, 27sylanbrc 582 . . . 4 (𝑓:𝐴1-1-onto𝐵𝑓 ∈ ({∅, 𝐴}Homeo{∅, 𝐵}))
29 hmphi 23806 . . . 4 (𝑓 ∈ ({∅, 𝐴}Homeo{∅, 𝐵}) → {∅, 𝐴} ≃ {∅, 𝐵})
3028, 29syl 17 . . 3 (𝑓:𝐴1-1-onto𝐵 → {∅, 𝐴} ≃ {∅, 𝐵})
3130exlimiv 1929 . 2 (∃𝑓 𝑓:𝐴1-1-onto𝐵 → {∅, 𝐴} ≃ {∅, 𝐵})
321, 31sylbi 217 1 (𝐴𝐵 → {∅, 𝐴} ≃ {∅, 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wex 1777  wcel 2108  Vcvv 3488  c0 4352  {cpr 4650   class class class wbr 5166  ccnv 5699  dom cdm 5700  wf 6569  ontowfo 6571  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  m cmap 8884  cen 9000  TopOnctopon 22937   Cn ccn 23253  Homeochmeo 23782  chmph 23783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-1o 8522  df-map 8886  df-en 9004  df-top 22921  df-topon 22938  df-cn 23256  df-hmeo 23784  df-hmph 23785
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator