MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indishmph Structured version   Visualization version   GIF version

Theorem indishmph 23736
Description: Equinumerous sets equipped with their indiscrete topologies are homeomorphic (which means in that particular case that a segment is homeomorphic to a circle contrary to what Wikipedia claims). (Contributed by FL, 17-Aug-2008.) (Proof shortened by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
indishmph (𝐴𝐵 → {∅, 𝐴} ≃ {∅, 𝐵})

Proof of Theorem indishmph
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 bren 8969 . 2 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
2 f1of 6818 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴𝐵)
3 f1odm 6822 . . . . . . . . . 10 (𝑓:𝐴1-1-onto𝐵 → dom 𝑓 = 𝐴)
4 vex 3463 . . . . . . . . . . 11 𝑓 ∈ V
54dmex 7905 . . . . . . . . . 10 dom 𝑓 ∈ V
63, 5eqeltrrdi 2843 . . . . . . . . 9 (𝑓:𝐴1-1-onto𝐵𝐴 ∈ V)
7 f1ofo 6825 . . . . . . . . 9 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴onto𝐵)
8 focdmex 7954 . . . . . . . . 9 (𝐴 ∈ V → (𝑓:𝐴onto𝐵𝐵 ∈ V))
96, 7, 8sylc 65 . . . . . . . 8 (𝑓:𝐴1-1-onto𝐵𝐵 ∈ V)
109, 6elmapd 8854 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵 → (𝑓 ∈ (𝐵m 𝐴) ↔ 𝑓:𝐴𝐵))
112, 10mpbird 257 . . . . . 6 (𝑓:𝐴1-1-onto𝐵𝑓 ∈ (𝐵m 𝐴))
12 indistopon 22939 . . . . . . . 8 (𝐴 ∈ V → {∅, 𝐴} ∈ (TopOn‘𝐴))
136, 12syl 17 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵 → {∅, 𝐴} ∈ (TopOn‘𝐴))
14 cnindis 23230 . . . . . . 7 (({∅, 𝐴} ∈ (TopOn‘𝐴) ∧ 𝐵 ∈ V) → ({∅, 𝐴} Cn {∅, 𝐵}) = (𝐵m 𝐴))
1513, 9, 14syl2anc 584 . . . . . 6 (𝑓:𝐴1-1-onto𝐵 → ({∅, 𝐴} Cn {∅, 𝐵}) = (𝐵m 𝐴))
1611, 15eleqtrrd 2837 . . . . 5 (𝑓:𝐴1-1-onto𝐵𝑓 ∈ ({∅, 𝐴} Cn {∅, 𝐵}))
17 f1ocnv 6830 . . . . . . . 8 (𝑓:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐴)
18 f1of 6818 . . . . . . . 8 (𝑓:𝐵1-1-onto𝐴𝑓:𝐵𝐴)
1917, 18syl 17 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵𝑓:𝐵𝐴)
206, 9elmapd 8854 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵 → (𝑓 ∈ (𝐴m 𝐵) ↔ 𝑓:𝐵𝐴))
2119, 20mpbird 257 . . . . . 6 (𝑓:𝐴1-1-onto𝐵𝑓 ∈ (𝐴m 𝐵))
22 indistopon 22939 . . . . . . . 8 (𝐵 ∈ V → {∅, 𝐵} ∈ (TopOn‘𝐵))
239, 22syl 17 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵 → {∅, 𝐵} ∈ (TopOn‘𝐵))
24 cnindis 23230 . . . . . . 7 (({∅, 𝐵} ∈ (TopOn‘𝐵) ∧ 𝐴 ∈ V) → ({∅, 𝐵} Cn {∅, 𝐴}) = (𝐴m 𝐵))
2523, 6, 24syl2anc 584 . . . . . 6 (𝑓:𝐴1-1-onto𝐵 → ({∅, 𝐵} Cn {∅, 𝐴}) = (𝐴m 𝐵))
2621, 25eleqtrrd 2837 . . . . 5 (𝑓:𝐴1-1-onto𝐵𝑓 ∈ ({∅, 𝐵} Cn {∅, 𝐴}))
27 ishmeo 23697 . . . . 5 (𝑓 ∈ ({∅, 𝐴}Homeo{∅, 𝐵}) ↔ (𝑓 ∈ ({∅, 𝐴} Cn {∅, 𝐵}) ∧ 𝑓 ∈ ({∅, 𝐵} Cn {∅, 𝐴})))
2816, 26, 27sylanbrc 583 . . . 4 (𝑓:𝐴1-1-onto𝐵𝑓 ∈ ({∅, 𝐴}Homeo{∅, 𝐵}))
29 hmphi 23715 . . . 4 (𝑓 ∈ ({∅, 𝐴}Homeo{∅, 𝐵}) → {∅, 𝐴} ≃ {∅, 𝐵})
3028, 29syl 17 . . 3 (𝑓:𝐴1-1-onto𝐵 → {∅, 𝐴} ≃ {∅, 𝐵})
3130exlimiv 1930 . 2 (∃𝑓 𝑓:𝐴1-1-onto𝐵 → {∅, 𝐴} ≃ {∅, 𝐵})
321, 31sylbi 217 1 (𝐴𝐵 → {∅, 𝐴} ≃ {∅, 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wex 1779  wcel 2108  Vcvv 3459  c0 4308  {cpr 4603   class class class wbr 5119  ccnv 5653  dom cdm 5654  wf 6527  ontowfo 6529  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  m cmap 8840  cen 8956  TopOnctopon 22848   Cn ccn 23162  Homeochmeo 23691  chmph 23692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-1o 8480  df-map 8842  df-en 8960  df-top 22832  df-topon 22849  df-cn 23165  df-hmeo 23693  df-hmph 23694
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator