MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmcoass Structured version   Visualization version   GIF version

Theorem dmcoass 17973
Description: The domain of composition is a collection of pairs of arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
coafval.o · = (compa𝐶)
coafval.a 𝐴 = (Arrow‘𝐶)
Assertion
Ref Expression
dmcoass dom · ⊆ (𝐴 × 𝐴)

Proof of Theorem dmcoass
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coafval.o . . . 4 · = (compa𝐶)
2 coafval.a . . . 4 𝐴 = (Arrow‘𝐶)
3 eqid 2729 . . . 4 (comp‘𝐶) = (comp‘𝐶)
41, 2, 3coafval 17971 . . 3 · = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝐶)(coda𝑔))(2nd𝑓))⟩)
54dmmpossx 8001 . 2 dom · 𝑔𝐴 ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)})
6 iunss 4994 . . 3 ( 𝑔𝐴 ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)}) ⊆ (𝐴 × 𝐴) ↔ ∀𝑔𝐴 ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)}) ⊆ (𝐴 × 𝐴))
7 snssi 4759 . . . 4 (𝑔𝐴 → {𝑔} ⊆ 𝐴)
8 ssrab2 4031 . . . 4 {𝐴 ∣ (coda) = (doma𝑔)} ⊆ 𝐴
9 xpss12 5634 . . . 4 (({𝑔} ⊆ 𝐴 ∧ {𝐴 ∣ (coda) = (doma𝑔)} ⊆ 𝐴) → ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)}) ⊆ (𝐴 × 𝐴))
107, 8, 9sylancl 586 . . 3 (𝑔𝐴 → ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)}) ⊆ (𝐴 × 𝐴))
116, 10mprgbir 3051 . 2 𝑔𝐴 ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)}) ⊆ (𝐴 × 𝐴)
125, 11sstri 3945 1 dom · ⊆ (𝐴 × 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {crab 3394  wss 3903  {csn 4577  cop 4583  cotp 4585   ciun 4941   × cxp 5617  dom cdm 5619  cfv 6482  (class class class)co 7349  2nd c2nd 7923  compcco 17173  domacdoma 17927  codaccoda 17928  Arrowcarw 17929  compaccoa 17961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-ot 4586  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-arw 17934  df-coa 17963
This theorem is referenced by:  coapm  17978
  Copyright terms: Public domain W3C validator