![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmcoass | Structured version Visualization version GIF version |
Description: The domain of composition is a collection of pairs of arrows. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
coafval.o | β’ Β· = (compaβπΆ) |
coafval.a | β’ π΄ = (ArrowβπΆ) |
Ref | Expression |
---|---|
dmcoass | β’ dom Β· β (π΄ Γ π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coafval.o | . . . 4 β’ Β· = (compaβπΆ) | |
2 | coafval.a | . . . 4 β’ π΄ = (ArrowβπΆ) | |
3 | eqid 2733 | . . . 4 β’ (compβπΆ) = (compβπΆ) | |
4 | 1, 2, 3 | coafval 18014 | . . 3 β’ Β· = (π β π΄, π β {β β π΄ β£ (codaββ) = (domaβπ)} β¦ β¨(domaβπ), (codaβπ), ((2nd βπ)(β¨(domaβπ), (domaβπ)β©(compβπΆ)(codaβπ))(2nd βπ))β©) |
5 | 4 | dmmpossx 8052 | . 2 β’ dom Β· β βͺ π β π΄ ({π} Γ {β β π΄ β£ (codaββ) = (domaβπ)}) |
6 | iunss 5049 | . . 3 β’ (βͺ π β π΄ ({π} Γ {β β π΄ β£ (codaββ) = (domaβπ)}) β (π΄ Γ π΄) β βπ β π΄ ({π} Γ {β β π΄ β£ (codaββ) = (domaβπ)}) β (π΄ Γ π΄)) | |
7 | snssi 4812 | . . . 4 β’ (π β π΄ β {π} β π΄) | |
8 | ssrab2 4078 | . . . 4 β’ {β β π΄ β£ (codaββ) = (domaβπ)} β π΄ | |
9 | xpss12 5692 | . . . 4 β’ (({π} β π΄ β§ {β β π΄ β£ (codaββ) = (domaβπ)} β π΄) β ({π} Γ {β β π΄ β£ (codaββ) = (domaβπ)}) β (π΄ Γ π΄)) | |
10 | 7, 8, 9 | sylancl 587 | . . 3 β’ (π β π΄ β ({π} Γ {β β π΄ β£ (codaββ) = (domaβπ)}) β (π΄ Γ π΄)) |
11 | 6, 10 | mprgbir 3069 | . 2 β’ βͺ π β π΄ ({π} Γ {β β π΄ β£ (codaββ) = (domaβπ)}) β (π΄ Γ π΄) |
12 | 5, 11 | sstri 3992 | 1 β’ dom Β· β (π΄ Γ π΄) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 β wcel 2107 {crab 3433 β wss 3949 {csn 4629 β¨cop 4635 β¨cotp 4637 βͺ ciun 4998 Γ cxp 5675 dom cdm 5677 βcfv 6544 (class class class)co 7409 2nd c2nd 7974 compcco 17209 domacdoma 17970 codaccoda 17971 Arrowcarw 17972 compaccoa 18004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-ot 4638 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-arw 17977 df-coa 18006 |
This theorem is referenced by: coapm 18021 |
Copyright terms: Public domain | W3C validator |