| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmcoass | Structured version Visualization version GIF version | ||
| Description: The domain of composition is a collection of pairs of arrows. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| coafval.o | ⊢ · = (compa‘𝐶) |
| coafval.a | ⊢ 𝐴 = (Arrow‘𝐶) |
| Ref | Expression |
|---|---|
| dmcoass | ⊢ dom · ⊆ (𝐴 × 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coafval.o | . . . 4 ⊢ · = (compa‘𝐶) | |
| 2 | coafval.a | . . . 4 ⊢ 𝐴 = (Arrow‘𝐶) | |
| 3 | eqid 2735 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 4 | 1, 2, 3 | coafval 18075 | . . 3 ⊢ · = (𝑔 ∈ 𝐴, 𝑓 ∈ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)} ↦ 〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓), (doma‘𝑔)〉(comp‘𝐶)(coda‘𝑔))(2nd ‘𝑓))〉) |
| 5 | 4 | dmmpossx 8063 | . 2 ⊢ dom · ⊆ ∪ 𝑔 ∈ 𝐴 ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)}) |
| 6 | iunss 5021 | . . 3 ⊢ (∪ 𝑔 ∈ 𝐴 ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)}) ⊆ (𝐴 × 𝐴) ↔ ∀𝑔 ∈ 𝐴 ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)}) ⊆ (𝐴 × 𝐴)) | |
| 7 | snssi 4784 | . . . 4 ⊢ (𝑔 ∈ 𝐴 → {𝑔} ⊆ 𝐴) | |
| 8 | ssrab2 4055 | . . . 4 ⊢ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)} ⊆ 𝐴 | |
| 9 | xpss12 5669 | . . . 4 ⊢ (({𝑔} ⊆ 𝐴 ∧ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)} ⊆ 𝐴) → ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)}) ⊆ (𝐴 × 𝐴)) | |
| 10 | 7, 8, 9 | sylancl 586 | . . 3 ⊢ (𝑔 ∈ 𝐴 → ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)}) ⊆ (𝐴 × 𝐴)) |
| 11 | 6, 10 | mprgbir 3058 | . 2 ⊢ ∪ 𝑔 ∈ 𝐴 ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)}) ⊆ (𝐴 × 𝐴) |
| 12 | 5, 11 | sstri 3968 | 1 ⊢ dom · ⊆ (𝐴 × 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 {crab 3415 ⊆ wss 3926 {csn 4601 〈cop 4607 〈cotp 4609 ∪ ciun 4967 × cxp 5652 dom cdm 5654 ‘cfv 6530 (class class class)co 7403 2nd c2nd 7985 compcco 17281 domacdoma 18031 codaccoda 18032 Arrowcarw 18033 compaccoa 18065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-ot 4610 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 df-arw 18038 df-coa 18067 |
| This theorem is referenced by: coapm 18082 |
| Copyright terms: Public domain | W3C validator |