MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmcoass Structured version   Visualization version   GIF version

Theorem dmcoass 18035
Description: The domain of composition is a collection of pairs of arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
coafval.o · = (compa𝐶)
coafval.a 𝐴 = (Arrow‘𝐶)
Assertion
Ref Expression
dmcoass dom · ⊆ (𝐴 × 𝐴)

Proof of Theorem dmcoass
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coafval.o . . . 4 · = (compa𝐶)
2 coafval.a . . . 4 𝐴 = (Arrow‘𝐶)
3 eqid 2730 . . . 4 (comp‘𝐶) = (comp‘𝐶)
41, 2, 3coafval 18033 . . 3 · = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝐶)(coda𝑔))(2nd𝑓))⟩)
54dmmpossx 8048 . 2 dom · 𝑔𝐴 ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)})
6 iunss 5012 . . 3 ( 𝑔𝐴 ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)}) ⊆ (𝐴 × 𝐴) ↔ ∀𝑔𝐴 ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)}) ⊆ (𝐴 × 𝐴))
7 snssi 4775 . . . 4 (𝑔𝐴 → {𝑔} ⊆ 𝐴)
8 ssrab2 4046 . . . 4 {𝐴 ∣ (coda) = (doma𝑔)} ⊆ 𝐴
9 xpss12 5656 . . . 4 (({𝑔} ⊆ 𝐴 ∧ {𝐴 ∣ (coda) = (doma𝑔)} ⊆ 𝐴) → ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)}) ⊆ (𝐴 × 𝐴))
107, 8, 9sylancl 586 . . 3 (𝑔𝐴 → ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)}) ⊆ (𝐴 × 𝐴))
116, 10mprgbir 3052 . 2 𝑔𝐴 ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)}) ⊆ (𝐴 × 𝐴)
125, 11sstri 3959 1 dom · ⊆ (𝐴 × 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {crab 3408  wss 3917  {csn 4592  cop 4598  cotp 4600   ciun 4958   × cxp 5639  dom cdm 5641  cfv 6514  (class class class)co 7390  2nd c2nd 7970  compcco 17239  domacdoma 17989  codaccoda 17990  Arrowcarw 17991  compaccoa 18023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-ot 4601  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-arw 17996  df-coa 18025
This theorem is referenced by:  coapm  18040
  Copyright terms: Public domain W3C validator