| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmcoass | Structured version Visualization version GIF version | ||
| Description: The domain of composition is a collection of pairs of arrows. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| coafval.o | ⊢ · = (compa‘𝐶) |
| coafval.a | ⊢ 𝐴 = (Arrow‘𝐶) |
| Ref | Expression |
|---|---|
| dmcoass | ⊢ dom · ⊆ (𝐴 × 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coafval.o | . . . 4 ⊢ · = (compa‘𝐶) | |
| 2 | coafval.a | . . . 4 ⊢ 𝐴 = (Arrow‘𝐶) | |
| 3 | eqid 2729 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 4 | 1, 2, 3 | coafval 18026 | . . 3 ⊢ · = (𝑔 ∈ 𝐴, 𝑓 ∈ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)} ↦ 〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓), (doma‘𝑔)〉(comp‘𝐶)(coda‘𝑔))(2nd ‘𝑓))〉) |
| 5 | 4 | dmmpossx 8045 | . 2 ⊢ dom · ⊆ ∪ 𝑔 ∈ 𝐴 ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)}) |
| 6 | iunss 5009 | . . 3 ⊢ (∪ 𝑔 ∈ 𝐴 ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)}) ⊆ (𝐴 × 𝐴) ↔ ∀𝑔 ∈ 𝐴 ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)}) ⊆ (𝐴 × 𝐴)) | |
| 7 | snssi 4772 | . . . 4 ⊢ (𝑔 ∈ 𝐴 → {𝑔} ⊆ 𝐴) | |
| 8 | ssrab2 4043 | . . . 4 ⊢ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)} ⊆ 𝐴 | |
| 9 | xpss12 5653 | . . . 4 ⊢ (({𝑔} ⊆ 𝐴 ∧ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)} ⊆ 𝐴) → ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)}) ⊆ (𝐴 × 𝐴)) | |
| 10 | 7, 8, 9 | sylancl 586 | . . 3 ⊢ (𝑔 ∈ 𝐴 → ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)}) ⊆ (𝐴 × 𝐴)) |
| 11 | 6, 10 | mprgbir 3051 | . 2 ⊢ ∪ 𝑔 ∈ 𝐴 ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)}) ⊆ (𝐴 × 𝐴) |
| 12 | 5, 11 | sstri 3956 | 1 ⊢ dom · ⊆ (𝐴 × 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {crab 3405 ⊆ wss 3914 {csn 4589 〈cop 4595 〈cotp 4597 ∪ ciun 4955 × cxp 5636 dom cdm 5638 ‘cfv 6511 (class class class)co 7387 2nd c2nd 7967 compcco 17232 domacdoma 17982 codaccoda 17983 Arrowcarw 17984 compaccoa 18016 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-ot 4598 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-arw 17989 df-coa 18018 |
| This theorem is referenced by: coapm 18033 |
| Copyright terms: Public domain | W3C validator |