| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmcoass | Structured version Visualization version GIF version | ||
| Description: The domain of composition is a collection of pairs of arrows. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| coafval.o | ⊢ · = (compa‘𝐶) |
| coafval.a | ⊢ 𝐴 = (Arrow‘𝐶) |
| Ref | Expression |
|---|---|
| dmcoass | ⊢ dom · ⊆ (𝐴 × 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coafval.o | . . . 4 ⊢ · = (compa‘𝐶) | |
| 2 | coafval.a | . . . 4 ⊢ 𝐴 = (Arrow‘𝐶) | |
| 3 | eqid 2729 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 4 | 1, 2, 3 | coafval 17971 | . . 3 ⊢ · = (𝑔 ∈ 𝐴, 𝑓 ∈ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)} ↦ 〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓), (doma‘𝑔)〉(comp‘𝐶)(coda‘𝑔))(2nd ‘𝑓))〉) |
| 5 | 4 | dmmpossx 8001 | . 2 ⊢ dom · ⊆ ∪ 𝑔 ∈ 𝐴 ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)}) |
| 6 | iunss 4994 | . . 3 ⊢ (∪ 𝑔 ∈ 𝐴 ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)}) ⊆ (𝐴 × 𝐴) ↔ ∀𝑔 ∈ 𝐴 ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)}) ⊆ (𝐴 × 𝐴)) | |
| 7 | snssi 4759 | . . . 4 ⊢ (𝑔 ∈ 𝐴 → {𝑔} ⊆ 𝐴) | |
| 8 | ssrab2 4031 | . . . 4 ⊢ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)} ⊆ 𝐴 | |
| 9 | xpss12 5634 | . . . 4 ⊢ (({𝑔} ⊆ 𝐴 ∧ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)} ⊆ 𝐴) → ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)}) ⊆ (𝐴 × 𝐴)) | |
| 10 | 7, 8, 9 | sylancl 586 | . . 3 ⊢ (𝑔 ∈ 𝐴 → ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)}) ⊆ (𝐴 × 𝐴)) |
| 11 | 6, 10 | mprgbir 3051 | . 2 ⊢ ∪ 𝑔 ∈ 𝐴 ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)}) ⊆ (𝐴 × 𝐴) |
| 12 | 5, 11 | sstri 3945 | 1 ⊢ dom · ⊆ (𝐴 × 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {crab 3394 ⊆ wss 3903 {csn 4577 〈cop 4583 〈cotp 4585 ∪ ciun 4941 × cxp 5617 dom cdm 5619 ‘cfv 6482 (class class class)co 7349 2nd c2nd 7923 compcco 17173 domacdoma 17927 codaccoda 17928 Arrowcarw 17929 compaccoa 17961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-ot 4586 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-arw 17934 df-coa 17963 |
| This theorem is referenced by: coapm 17978 |
| Copyright terms: Public domain | W3C validator |