![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > homul12 | Structured version Visualization version GIF version |
Description: Swap first and second factors in a nested operator scalar product. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
homul12 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op (𝐵 ·op 𝑇)) = (𝐵 ·op (𝐴 ·op 𝑇))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulcom 10360 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | |
2 | 1 | oveq1d 6939 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) ·op 𝑇) = ((𝐵 · 𝐴) ·op 𝑇)) |
3 | 2 | 3adant3 1123 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 · 𝐵) ·op 𝑇) = ((𝐵 · 𝐴) ·op 𝑇)) |
4 | homulass 29250 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 · 𝐵) ·op 𝑇) = (𝐴 ·op (𝐵 ·op 𝑇))) | |
5 | homulass 29250 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐵 · 𝐴) ·op 𝑇) = (𝐵 ·op (𝐴 ·op 𝑇))) | |
6 | 5 | 3com12 1114 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐵 · 𝐴) ·op 𝑇) = (𝐵 ·op (𝐴 ·op 𝑇))) |
7 | 3, 4, 6 | 3eqtr3d 2822 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op (𝐵 ·op 𝑇)) = (𝐵 ·op (𝐴 ·op 𝑇))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ⟶wf 6133 (class class class)co 6924 ℂcc 10272 · cmul 10279 ℋchba 28365 ·op chot 28385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-mulcl 10336 ax-mulcom 10338 ax-hilex 28445 ax-hfvmul 28451 ax-hvmulass 28453 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-map 8144 df-homul 29179 |
This theorem is referenced by: hosubdi 29256 |
Copyright terms: Public domain | W3C validator |