HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  homul12 Structured version   Visualization version   GIF version

Theorem homul12 31562
Description: Swap first and second factors in a nested operator scalar product. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
homul12 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โ†’ (๐ด ยทop (๐ต ยทop ๐‘‡)) = (๐ต ยทop (๐ด ยทop ๐‘‡)))

Proof of Theorem homul12
StepHypRef Expression
1 mulcom 11195 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ด ยท ๐ต) = (๐ต ยท ๐ด))
21oveq1d 7419 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((๐ด ยท ๐ต) ยทop ๐‘‡) = ((๐ต ยท ๐ด) ยทop ๐‘‡))
323adant3 1129 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โ†’ ((๐ด ยท ๐ต) ยทop ๐‘‡) = ((๐ต ยท ๐ด) ยทop ๐‘‡))
4 homulass 31559 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โ†’ ((๐ด ยท ๐ต) ยทop ๐‘‡) = (๐ด ยทop (๐ต ยทop ๐‘‡)))
5 homulass 31559 . . 3 ((๐ต โˆˆ โ„‚ โˆง ๐ด โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โ†’ ((๐ต ยท ๐ด) ยทop ๐‘‡) = (๐ต ยทop (๐ด ยทop ๐‘‡)))
653com12 1120 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โ†’ ((๐ต ยท ๐ด) ยทop ๐‘‡) = (๐ต ยทop (๐ด ยทop ๐‘‡)))
73, 4, 63eqtr3d 2774 1 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โ†’ (๐ด ยทop (๐ต ยทop ๐‘‡)) = (๐ต ยทop (๐ด ยทop ๐‘‡)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 395   โˆง w3a 1084   = wceq 1533   โˆˆ wcel 2098  โŸถwf 6532  (class class class)co 7404  โ„‚cc 11107   ยท cmul 11114   โ„‹chba 30676   ยทop chot 30696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-mulcl 11171  ax-mulcom 11173  ax-hilex 30756  ax-hfvmul 30762  ax-hvmulass 30764
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-map 8821  df-homul 31488
This theorem is referenced by:  hosubdi  31565
  Copyright terms: Public domain W3C validator