![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > honegneg | Structured version Visualization version GIF version |
Description: Double negative of a Hilbert space operator. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
honegneg | ⊢ (𝑇: ℋ⟶ ℋ → (-1 ·op (-1 ·op 𝑇)) = 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1mulneg1e1 12508 | . . 3 ⊢ (-1 · -1) = 1 | |
2 | 1 | oveq1i 7460 | . 2 ⊢ ((-1 · -1) ·op 𝑇) = (1 ·op 𝑇) |
3 | neg1cn 12409 | . . 3 ⊢ -1 ∈ ℂ | |
4 | homulass 31836 | . . 3 ⊢ ((-1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((-1 · -1) ·op 𝑇) = (-1 ·op (-1 ·op 𝑇))) | |
5 | 3, 3, 4 | mp3an12 1451 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → ((-1 · -1) ·op 𝑇) = (-1 ·op (-1 ·op 𝑇))) |
6 | homullid 31834 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → (1 ·op 𝑇) = 𝑇) | |
7 | 2, 5, 6 | 3eqtr3a 2804 | 1 ⊢ (𝑇: ℋ⟶ ℋ → (-1 ·op (-1 ·op 𝑇)) = 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ⟶wf 6571 (class class class)co 7450 ℂcc 11184 1c1 11187 · cmul 11191 -cneg 11523 ℋchba 30953 ·op chot 30973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-hilex 31033 ax-hfvmul 31039 ax-hvmulid 31040 ax-hvmulass 31041 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-er 8765 df-map 8888 df-en 9006 df-dom 9007 df-sdom 9008 df-pnf 11328 df-mnf 11329 df-ltxr 11331 df-sub 11524 df-neg 11525 df-homul 31765 |
This theorem is referenced by: hosubneg 31841 honegsubdi 31844 |
Copyright terms: Public domain | W3C validator |