| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > honegneg | Structured version Visualization version GIF version | ||
| Description: Double negative of a Hilbert space operator. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| honegneg | ⊢ (𝑇: ℋ⟶ ℋ → (-1 ·op (-1 ·op 𝑇)) = 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1mulneg1e1 12400 | . . 3 ⊢ (-1 · -1) = 1 | |
| 2 | 1 | oveq1i 7399 | . 2 ⊢ ((-1 · -1) ·op 𝑇) = (1 ·op 𝑇) |
| 3 | neg1cn 12301 | . . 3 ⊢ -1 ∈ ℂ | |
| 4 | homulass 31737 | . . 3 ⊢ ((-1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((-1 · -1) ·op 𝑇) = (-1 ·op (-1 ·op 𝑇))) | |
| 5 | 3, 3, 4 | mp3an12 1453 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → ((-1 · -1) ·op 𝑇) = (-1 ·op (-1 ·op 𝑇))) |
| 6 | homullid 31735 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → (1 ·op 𝑇) = 𝑇) | |
| 7 | 2, 5, 6 | 3eqtr3a 2789 | 1 ⊢ (𝑇: ℋ⟶ ℋ → (-1 ·op (-1 ·op 𝑇)) = 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⟶wf 6509 (class class class)co 7389 ℂcc 11072 1c1 11075 · cmul 11079 -cneg 11412 ℋchba 30854 ·op chot 30874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-hilex 30934 ax-hfvmul 30940 ax-hvmulid 30941 ax-hvmulass 30942 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-po 5548 df-so 5549 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-er 8673 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-ltxr 11219 df-sub 11413 df-neg 11414 df-homul 31666 |
| This theorem is referenced by: hosubneg 31742 honegsubdi 31745 |
| Copyright terms: Public domain | W3C validator |