HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmcopex Structured version   Visualization version   GIF version

Theorem nmcopex 31973
Description: The norm of a continuous linear Hilbert space operator exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmcopex ((𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp) → (normop𝑇) ∈ ℝ)

Proof of Theorem nmcopex
StepHypRef Expression
1 elin 3919 . 2 (𝑇 ∈ (LinOp ∩ ContOp) ↔ (𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp))
2 fveq2 6822 . . . 4 (𝑇 = if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) → (normop𝑇) = (normop‘if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ))))
32eleq1d 2813 . . 3 (𝑇 = if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) → ((normop𝑇) ∈ ℝ ↔ (normop‘if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ))) ∈ ℝ))
4 idlnop 31936 . . . . . . . 8 ( I ↾ ℋ) ∈ LinOp
5 idcnop 31925 . . . . . . . 8 ( I ↾ ℋ) ∈ ContOp
6 elin 3919 . . . . . . . 8 (( I ↾ ℋ) ∈ (LinOp ∩ ContOp) ↔ (( I ↾ ℋ) ∈ LinOp ∧ ( I ↾ ℋ) ∈ ContOp))
74, 5, 6mpbir2an 711 . . . . . . 7 ( I ↾ ℋ) ∈ (LinOp ∩ ContOp)
87elimel 4546 . . . . . 6 if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) ∈ (LinOp ∩ ContOp)
9 elin 3919 . . . . . 6 (if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) ∈ (LinOp ∩ ContOp) ↔ (if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) ∈ LinOp ∧ if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) ∈ ContOp))
108, 9mpbi 230 . . . . 5 (if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) ∈ LinOp ∧ if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) ∈ ContOp)
1110simpli 483 . . . 4 if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) ∈ LinOp
1210simpri 485 . . . 4 if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) ∈ ContOp
1311, 12nmcopexi 31971 . . 3 (normop‘if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ))) ∈ ℝ
143, 13dedth 4535 . 2 (𝑇 ∈ (LinOp ∩ ContOp) → (normop𝑇) ∈ ℝ)
151, 14sylbir 235 1 ((𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp) → (normop𝑇) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3902  ifcif 4476   I cid 5513  cres 5621  cfv 6482  cr 11008  chba 30863  normopcnop 30889  ContOpccop 30890  LinOpclo 30891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-hilex 30943  ax-hfvadd 30944  ax-hvcom 30945  ax-hvass 30946  ax-hv0cl 30947  ax-hvaddid 30948  ax-hfvmul 30949  ax-hvmulid 30950  ax-hvmulass 30951  ax-hvdistr2 30953  ax-hvmul0 30954  ax-hfi 31023  ax-his1 31026  ax-his2 31027  ax-his3 31028  ax-his4 31029
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-hnorm 30912  df-hvsub 30915  df-nmop 31783  df-cnop 31784  df-lnop 31785  df-unop 31787
This theorem is referenced by:  lnopconi  31978  lnopcnbd  31980
  Copyright terms: Public domain W3C validator