Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lauteq Structured version   Visualization version   GIF version

Theorem lauteq 38036
Description: A lattice automorphism argument is equal to its value if all atoms are equal to their values. (Contributed by NM, 24-May-2012.)
Hypotheses
Ref Expression
lauteq.b 𝐵 = (Base‘𝐾)
lauteq.a 𝐴 = (Atoms‘𝐾)
lauteq.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
lauteq (((𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵) ∧ ∀𝑝𝐴 (𝐹𝑝) = 𝑝) → (𝐹𝑋) = 𝑋)
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐹,𝑝   𝐼,𝑝   𝐾,𝑝   𝑋,𝑝

Proof of Theorem lauteq
StepHypRef Expression
1 simpl1 1189 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵) ∧ 𝑝𝐴) → 𝐾 ∈ HL)
2 simpl2 1190 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵) ∧ 𝑝𝐴) → 𝐹𝐼)
3 lauteq.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
4 lauteq.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
53, 4atbase 37230 . . . . . . . . 9 (𝑝𝐴𝑝𝐵)
65adantl 481 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵) ∧ 𝑝𝐴) → 𝑝𝐵)
7 simpl3 1191 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵) ∧ 𝑝𝐴) → 𝑋𝐵)
8 eqid 2738 . . . . . . . . 9 (le‘𝐾) = (le‘𝐾)
9 lauteq.i . . . . . . . . 9 𝐼 = (LAut‘𝐾)
103, 8, 9lautle 38025 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝐹𝐼) ∧ (𝑝𝐵𝑋𝐵)) → (𝑝(le‘𝐾)𝑋 ↔ (𝐹𝑝)(le‘𝐾)(𝐹𝑋)))
111, 2, 6, 7, 10syl22anc 835 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵) ∧ 𝑝𝐴) → (𝑝(le‘𝐾)𝑋 ↔ (𝐹𝑝)(le‘𝐾)(𝐹𝑋)))
12 breq1 5073 . . . . . . 7 ((𝐹𝑝) = 𝑝 → ((𝐹𝑝)(le‘𝐾)(𝐹𝑋) ↔ 𝑝(le‘𝐾)(𝐹𝑋)))
1311, 12sylan9bb 509 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵) ∧ 𝑝𝐴) ∧ (𝐹𝑝) = 𝑝) → (𝑝(le‘𝐾)𝑋𝑝(le‘𝐾)(𝐹𝑋)))
1413bicomd 222 . . . . 5 ((((𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵) ∧ 𝑝𝐴) ∧ (𝐹𝑝) = 𝑝) → (𝑝(le‘𝐾)(𝐹𝑋) ↔ 𝑝(le‘𝐾)𝑋))
1514ex 412 . . . 4 (((𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵) ∧ 𝑝𝐴) → ((𝐹𝑝) = 𝑝 → (𝑝(le‘𝐾)(𝐹𝑋) ↔ 𝑝(le‘𝐾)𝑋)))
1615ralimdva 3102 . . 3 ((𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵) → (∀𝑝𝐴 (𝐹𝑝) = 𝑝 → ∀𝑝𝐴 (𝑝(le‘𝐾)(𝐹𝑋) ↔ 𝑝(le‘𝐾)𝑋)))
1716imp 406 . 2 (((𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵) ∧ ∀𝑝𝐴 (𝐹𝑝) = 𝑝) → ∀𝑝𝐴 (𝑝(le‘𝐾)(𝐹𝑋) ↔ 𝑝(le‘𝐾)𝑋))
18 simpl1 1189 . . 3 (((𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵) ∧ ∀𝑝𝐴 (𝐹𝑝) = 𝑝) → 𝐾 ∈ HL)
19 simpl2 1190 . . . 4 (((𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵) ∧ ∀𝑝𝐴 (𝐹𝑝) = 𝑝) → 𝐹𝐼)
20 simpl3 1191 . . . 4 (((𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵) ∧ ∀𝑝𝐴 (𝐹𝑝) = 𝑝) → 𝑋𝐵)
213, 9lautcl 38028 . . . 4 (((𝐾 ∈ HL ∧ 𝐹𝐼) ∧ 𝑋𝐵) → (𝐹𝑋) ∈ 𝐵)
2218, 19, 20, 21syl21anc 834 . . 3 (((𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵) ∧ ∀𝑝𝐴 (𝐹𝑝) = 𝑝) → (𝐹𝑋) ∈ 𝐵)
233, 8, 4hlateq 37340 . . 3 ((𝐾 ∈ HL ∧ (𝐹𝑋) ∈ 𝐵𝑋𝐵) → (∀𝑝𝐴 (𝑝(le‘𝐾)(𝐹𝑋) ↔ 𝑝(le‘𝐾)𝑋) ↔ (𝐹𝑋) = 𝑋))
2418, 22, 20, 23syl3anc 1369 . 2 (((𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵) ∧ ∀𝑝𝐴 (𝐹𝑝) = 𝑝) → (∀𝑝𝐴 (𝑝(le‘𝐾)(𝐹𝑋) ↔ 𝑝(le‘𝐾)𝑋) ↔ (𝐹𝑋) = 𝑋))
2517, 24mpbid 231 1 (((𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵) ∧ ∀𝑝𝐴 (𝐹𝑝) = 𝑝) → (𝐹𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063   class class class wbr 5070  cfv 6418  Basecbs 16840  lecple 16895  Atomscatm 37204  HLchlt 37291  LAutclaut 37926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-laut 37930
This theorem is referenced by:  ltrnid  38076
  Copyright terms: Public domain W3C validator