Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lauteq Structured version   Visualization version   GIF version

Theorem lauteq 40204
Description: A lattice automorphism argument is equal to its value if all atoms are equal to their values. (Contributed by NM, 24-May-2012.)
Hypotheses
Ref Expression
lauteq.b 𝐵 = (Base‘𝐾)
lauteq.a 𝐴 = (Atoms‘𝐾)
lauteq.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
lauteq (((𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵) ∧ ∀𝑝𝐴 (𝐹𝑝) = 𝑝) → (𝐹𝑋) = 𝑋)
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐹,𝑝   𝐼,𝑝   𝐾,𝑝   𝑋,𝑝

Proof of Theorem lauteq
StepHypRef Expression
1 simpl1 1192 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵) ∧ 𝑝𝐴) → 𝐾 ∈ HL)
2 simpl2 1193 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵) ∧ 𝑝𝐴) → 𝐹𝐼)
3 lauteq.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
4 lauteq.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
53, 4atbase 39398 . . . . . . . . 9 (𝑝𝐴𝑝𝐵)
65adantl 481 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵) ∧ 𝑝𝐴) → 𝑝𝐵)
7 simpl3 1194 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵) ∧ 𝑝𝐴) → 𝑋𝐵)
8 eqid 2733 . . . . . . . . 9 (le‘𝐾) = (le‘𝐾)
9 lauteq.i . . . . . . . . 9 𝐼 = (LAut‘𝐾)
103, 8, 9lautle 40193 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝐹𝐼) ∧ (𝑝𝐵𝑋𝐵)) → (𝑝(le‘𝐾)𝑋 ↔ (𝐹𝑝)(le‘𝐾)(𝐹𝑋)))
111, 2, 6, 7, 10syl22anc 838 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵) ∧ 𝑝𝐴) → (𝑝(le‘𝐾)𝑋 ↔ (𝐹𝑝)(le‘𝐾)(𝐹𝑋)))
12 breq1 5098 . . . . . . 7 ((𝐹𝑝) = 𝑝 → ((𝐹𝑝)(le‘𝐾)(𝐹𝑋) ↔ 𝑝(le‘𝐾)(𝐹𝑋)))
1311, 12sylan9bb 509 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵) ∧ 𝑝𝐴) ∧ (𝐹𝑝) = 𝑝) → (𝑝(le‘𝐾)𝑋𝑝(le‘𝐾)(𝐹𝑋)))
1413bicomd 223 . . . . 5 ((((𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵) ∧ 𝑝𝐴) ∧ (𝐹𝑝) = 𝑝) → (𝑝(le‘𝐾)(𝐹𝑋) ↔ 𝑝(le‘𝐾)𝑋))
1514ex 412 . . . 4 (((𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵) ∧ 𝑝𝐴) → ((𝐹𝑝) = 𝑝 → (𝑝(le‘𝐾)(𝐹𝑋) ↔ 𝑝(le‘𝐾)𝑋)))
1615ralimdva 3146 . . 3 ((𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵) → (∀𝑝𝐴 (𝐹𝑝) = 𝑝 → ∀𝑝𝐴 (𝑝(le‘𝐾)(𝐹𝑋) ↔ 𝑝(le‘𝐾)𝑋)))
1716imp 406 . 2 (((𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵) ∧ ∀𝑝𝐴 (𝐹𝑝) = 𝑝) → ∀𝑝𝐴 (𝑝(le‘𝐾)(𝐹𝑋) ↔ 𝑝(le‘𝐾)𝑋))
18 simpl1 1192 . . 3 (((𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵) ∧ ∀𝑝𝐴 (𝐹𝑝) = 𝑝) → 𝐾 ∈ HL)
19 simpl2 1193 . . . 4 (((𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵) ∧ ∀𝑝𝐴 (𝐹𝑝) = 𝑝) → 𝐹𝐼)
20 simpl3 1194 . . . 4 (((𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵) ∧ ∀𝑝𝐴 (𝐹𝑝) = 𝑝) → 𝑋𝐵)
213, 9lautcl 40196 . . . 4 (((𝐾 ∈ HL ∧ 𝐹𝐼) ∧ 𝑋𝐵) → (𝐹𝑋) ∈ 𝐵)
2218, 19, 20, 21syl21anc 837 . . 3 (((𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵) ∧ ∀𝑝𝐴 (𝐹𝑝) = 𝑝) → (𝐹𝑋) ∈ 𝐵)
233, 8, 4hlateq 39508 . . 3 ((𝐾 ∈ HL ∧ (𝐹𝑋) ∈ 𝐵𝑋𝐵) → (∀𝑝𝐴 (𝑝(le‘𝐾)(𝐹𝑋) ↔ 𝑝(le‘𝐾)𝑋) ↔ (𝐹𝑋) = 𝑋))
2418, 22, 20, 23syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵) ∧ ∀𝑝𝐴 (𝐹𝑝) = 𝑝) → (∀𝑝𝐴 (𝑝(le‘𝐾)(𝐹𝑋) ↔ 𝑝(le‘𝐾)𝑋) ↔ (𝐹𝑋) = 𝑋))
2517, 24mpbid 232 1 (((𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵) ∧ ∀𝑝𝐴 (𝐹𝑝) = 𝑝) → (𝐹𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3049   class class class wbr 5095  cfv 6489  Basecbs 17130  lecple 17178  Atomscatm 39372  HLchlt 39459  LAutclaut 40094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-map 8761  df-proset 18210  df-poset 18229  df-plt 18244  df-lub 18260  df-glb 18261  df-join 18262  df-meet 18263  df-p0 18339  df-lat 18348  df-clat 18415  df-oposet 39285  df-ol 39287  df-oml 39288  df-covers 39375  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460  df-laut 40098
This theorem is referenced by:  ltrnid  40244
  Copyright terms: Public domain W3C validator