Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ind1 Structured version   Visualization version   GIF version

Theorem ind1 33973
Description: Value of the indicator function where it is 1. (Contributed by Thierry Arnoux, 14-Aug-2017.)
Assertion
Ref Expression
ind1 ((𝑂𝑉𝐴𝑂𝑋𝐴) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = 1)

Proof of Theorem ind1
StepHypRef Expression
1 simp2 1137 . . . 4 ((𝑂𝑉𝐴𝑂𝑋𝐴) → 𝐴𝑂)
2 simp3 1138 . . . 4 ((𝑂𝑉𝐴𝑂𝑋𝐴) → 𝑋𝐴)
31, 2sseldd 4009 . . 3 ((𝑂𝑉𝐴𝑂𝑋𝐴) → 𝑋𝑂)
4 indfval 33972 . . 3 ((𝑂𝑉𝐴𝑂𝑋𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋𝐴, 1, 0))
53, 4syld3an3 1409 . 2 ((𝑂𝑉𝐴𝑂𝑋𝐴) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋𝐴, 1, 0))
6 iftrue 4554 . . 3 (𝑋𝐴 → if(𝑋𝐴, 1, 0) = 1)
763ad2ant3 1135 . 2 ((𝑂𝑉𝐴𝑂𝑋𝐴) → if(𝑋𝐴, 1, 0) = 1)
85, 7eqtrd 2780 1 ((𝑂𝑉𝐴𝑂𝑋𝐴) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  wss 3976  ifcif 4548  cfv 6568  0cc0 11178  1c1 11179  𝟭cind 33966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-1cn 11236  ax-icn 11237  ax-addcl 11238  ax-addrcl 11239  ax-mulcl 11240  ax-mulrcl 11241  ax-i2m1 11246  ax-1ne0 11247  ax-rnegex 11249  ax-rrecex 11250  ax-cnre 11251
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5701  df-rel 5702  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-ima 5708  df-iota 6520  df-fun 6570  df-fn 6571  df-f 6572  df-f1 6573  df-fo 6574  df-f1o 6575  df-fv 6576  df-ov 7446  df-ind 33967
This theorem is referenced by:  indsum  33977  indsumin  33978
  Copyright terms: Public domain W3C validator