Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ind1 Structured version   Visualization version   GIF version

Theorem ind1 31697
Description: Value of the indicator function where it is 1. (Contributed by Thierry Arnoux, 14-Aug-2017.)
Assertion
Ref Expression
ind1 ((𝑂𝑉𝐴𝑂𝑋𝐴) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = 1)

Proof of Theorem ind1
StepHypRef Expression
1 simp2 1139 . . . 4 ((𝑂𝑉𝐴𝑂𝑋𝐴) → 𝐴𝑂)
2 simp3 1140 . . . 4 ((𝑂𝑉𝐴𝑂𝑋𝐴) → 𝑋𝐴)
31, 2sseldd 3902 . . 3 ((𝑂𝑉𝐴𝑂𝑋𝐴) → 𝑋𝑂)
4 indfval 31696 . . 3 ((𝑂𝑉𝐴𝑂𝑋𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋𝐴, 1, 0))
53, 4syld3an3 1411 . 2 ((𝑂𝑉𝐴𝑂𝑋𝐴) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋𝐴, 1, 0))
6 iftrue 4445 . . 3 (𝑋𝐴 → if(𝑋𝐴, 1, 0) = 1)
763ad2ant3 1137 . 2 ((𝑂𝑉𝐴𝑂𝑋𝐴) → if(𝑋𝐴, 1, 0) = 1)
85, 7eqtrd 2777 1 ((𝑂𝑉𝐴𝑂𝑋𝐴) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1089   = wceq 1543  wcel 2110  wss 3866  ifcif 4439  cfv 6380  0cc0 10729  1c1 10730  𝟭cind 31690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-i2m1 10797  ax-1ne0 10798  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-ind 31691
This theorem is referenced by:  indsum  31701  indsumin  31702
  Copyright terms: Public domain W3C validator