Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ind1 Structured version   Visualization version   GIF version

Theorem ind1 33630
Description: Value of the indicator function where it is 1. (Contributed by Thierry Arnoux, 14-Aug-2017.)
Assertion
Ref Expression
ind1 ((𝑂𝑉𝐴𝑂𝑋𝐴) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = 1)

Proof of Theorem ind1
StepHypRef Expression
1 simp2 1135 . . . 4 ((𝑂𝑉𝐴𝑂𝑋𝐴) → 𝐴𝑂)
2 simp3 1136 . . . 4 ((𝑂𝑉𝐴𝑂𝑋𝐴) → 𝑋𝐴)
31, 2sseldd 3979 . . 3 ((𝑂𝑉𝐴𝑂𝑋𝐴) → 𝑋𝑂)
4 indfval 33629 . . 3 ((𝑂𝑉𝐴𝑂𝑋𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋𝐴, 1, 0))
53, 4syld3an3 1407 . 2 ((𝑂𝑉𝐴𝑂𝑋𝐴) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋𝐴, 1, 0))
6 iftrue 4530 . . 3 (𝑋𝐴 → if(𝑋𝐴, 1, 0) = 1)
763ad2ant3 1133 . 2 ((𝑂𝑉𝐴𝑂𝑋𝐴) → if(𝑋𝐴, 1, 0) = 1)
85, 7eqtrd 2768 1 ((𝑂𝑉𝐴𝑂𝑋𝐴) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1534  wcel 2099  wss 3945  ifcif 4524  cfv 6542  0cc0 11132  1c1 11133  𝟭cind 33623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-i2m1 11200  ax-1ne0 11201  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-ind 33624
This theorem is referenced by:  indsum  33634  indsumin  33635
  Copyright terms: Public domain W3C validator