![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ind1 | Structured version Visualization version GIF version |
Description: Value of the indicator function where it is 1. (Contributed by Thierry Arnoux, 14-Aug-2017.) |
Ref | Expression |
---|---|
ind1 | ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝐴) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1135 | . . . 4 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝐴) → 𝐴 ⊆ 𝑂) | |
2 | simp3 1136 | . . . 4 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ 𝐴) | |
3 | 1, 2 | sseldd 3996 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ 𝑂) |
4 | indfval 33958 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋 ∈ 𝐴, 1, 0)) | |
5 | 3, 4 | syld3an3 1407 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝐴) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋 ∈ 𝐴, 1, 0)) |
6 | iftrue 4536 | . . 3 ⊢ (𝑋 ∈ 𝐴 → if(𝑋 ∈ 𝐴, 1, 0) = 1) | |
7 | 6 | 3ad2ant3 1133 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝐴) → if(𝑋 ∈ 𝐴, 1, 0) = 1) |
8 | 5, 7 | eqtrd 2773 | 1 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝐴) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1535 ∈ wcel 2104 ⊆ wss 3963 ifcif 4530 ‘cfv 6558 0cc0 11146 1c1 11147 𝟭cind 33952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-10 2137 ax-11 2153 ax-12 2173 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5366 ax-pr 5430 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-i2m1 11214 ax-1ne0 11215 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2536 df-eu 2565 df-clab 2711 df-cleq 2725 df-clel 2812 df-nfc 2888 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3377 df-rab 3433 df-v 3479 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4915 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-iota 6510 df-fun 6560 df-fn 6561 df-f 6562 df-f1 6563 df-fo 6564 df-f1o 6565 df-fv 6566 df-ov 7428 df-ind 33953 |
This theorem is referenced by: indsum 33963 indsumin 33964 |
Copyright terms: Public domain | W3C validator |