Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ind0 Structured version   Visualization version   GIF version

Theorem ind0 31886
Description: Value of the indicator function where it is 0. (Contributed by Thierry Arnoux, 14-Aug-2017.)
Assertion
Ref Expression
ind0 ((𝑂𝑉𝐴𝑂𝑋 ∈ (𝑂𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = 0)

Proof of Theorem ind0
StepHypRef Expression
1 eldifi 4057 . . 3 (𝑋 ∈ (𝑂𝐴) → 𝑋𝑂)
2 indfval 31884 . . 3 ((𝑂𝑉𝐴𝑂𝑋𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋𝐴, 1, 0))
31, 2syl3an3 1163 . 2 ((𝑂𝑉𝐴𝑂𝑋 ∈ (𝑂𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋𝐴, 1, 0))
4 eldifn 4058 . . . 4 (𝑋 ∈ (𝑂𝐴) → ¬ 𝑋𝐴)
543ad2ant3 1133 . . 3 ((𝑂𝑉𝐴𝑂𝑋 ∈ (𝑂𝐴)) → ¬ 𝑋𝐴)
65iffalsed 4467 . 2 ((𝑂𝑉𝐴𝑂𝑋 ∈ (𝑂𝐴)) → if(𝑋𝐴, 1, 0) = 0)
73, 6eqtrd 2778 1 ((𝑂𝑉𝐴𝑂𝑋 ∈ (𝑂𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1085   = wceq 1539  wcel 2108  cdif 3880  wss 3883  ifcif 4456  cfv 6418  0cc0 10802  1c1 10803  𝟭cind 31878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-i2m1 10870  ax-1ne0 10871  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-ind 31879
This theorem is referenced by:  indsum  31889  indsumin  31890
  Copyright terms: Public domain W3C validator