| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ind0 | Structured version Visualization version GIF version | ||
| Description: Value of the indicator function where it is 0. (Contributed by Thierry Arnoux, 14-Aug-2017.) |
| Ref | Expression |
|---|---|
| ind0 | ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ (𝑂 ∖ 𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 4080 | . . 3 ⊢ (𝑋 ∈ (𝑂 ∖ 𝐴) → 𝑋 ∈ 𝑂) | |
| 2 | indfval 32844 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋 ∈ 𝐴, 1, 0)) | |
| 3 | 1, 2 | syl3an3 1165 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ (𝑂 ∖ 𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋 ∈ 𝐴, 1, 0)) |
| 4 | eldifn 4081 | . . . 4 ⊢ (𝑋 ∈ (𝑂 ∖ 𝐴) → ¬ 𝑋 ∈ 𝐴) | |
| 5 | 4 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ (𝑂 ∖ 𝐴)) → ¬ 𝑋 ∈ 𝐴) |
| 6 | 5 | iffalsed 4487 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ (𝑂 ∖ 𝐴)) → if(𝑋 ∈ 𝐴, 1, 0) = 0) |
| 7 | 3, 6 | eqtrd 2768 | 1 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ (𝑂 ∖ 𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∖ cdif 3895 ⊆ wss 3898 ifcif 4476 ‘cfv 6488 0cc0 11015 1c1 11016 𝟭cind 32838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-i2m1 11083 ax-1ne0 11084 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-ind 32839 |
| This theorem is referenced by: indsum 32851 indsumin 32852 elrgspnsubrunlem1 33223 esplyfv 33612 esplyfval3 33614 esplyind 33615 |
| Copyright terms: Public domain | W3C validator |