Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ind0 Structured version   Visualization version   GIF version

Theorem ind0 32846
Description: Value of the indicator function where it is 0. (Contributed by Thierry Arnoux, 14-Aug-2017.)
Assertion
Ref Expression
ind0 ((𝑂𝑉𝐴𝑂𝑋 ∈ (𝑂𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = 0)

Proof of Theorem ind0
StepHypRef Expression
1 eldifi 4080 . . 3 (𝑋 ∈ (𝑂𝐴) → 𝑋𝑂)
2 indfval 32844 . . 3 ((𝑂𝑉𝐴𝑂𝑋𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋𝐴, 1, 0))
31, 2syl3an3 1165 . 2 ((𝑂𝑉𝐴𝑂𝑋 ∈ (𝑂𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋𝐴, 1, 0))
4 eldifn 4081 . . . 4 (𝑋 ∈ (𝑂𝐴) → ¬ 𝑋𝐴)
543ad2ant3 1135 . . 3 ((𝑂𝑉𝐴𝑂𝑋 ∈ (𝑂𝐴)) → ¬ 𝑋𝐴)
65iffalsed 4487 . 2 ((𝑂𝑉𝐴𝑂𝑋 ∈ (𝑂𝐴)) → if(𝑋𝐴, 1, 0) = 0)
73, 6eqtrd 2768 1 ((𝑂𝑉𝐴𝑂𝑋 ∈ (𝑂𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1086   = wceq 1541  wcel 2113  cdif 3895  wss 3898  ifcif 4476  cfv 6488  0cc0 11015  1c1 11016  𝟭cind 32838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-i2m1 11083  ax-1ne0 11084  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-ov 7357  df-ind 32839
This theorem is referenced by:  indsum  32851  indsumin  32852  elrgspnsubrunlem1  33223  esplyfv  33612  esplyfval3  33614  esplyind  33615
  Copyright terms: Public domain W3C validator