Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ind0 Structured version   Visualization version   GIF version

Theorem ind0 32814
Description: Value of the indicator function where it is 0. (Contributed by Thierry Arnoux, 14-Aug-2017.)
Assertion
Ref Expression
ind0 ((𝑂𝑉𝐴𝑂𝑋 ∈ (𝑂𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = 0)

Proof of Theorem ind0
StepHypRef Expression
1 eldifi 4084 . . 3 (𝑋 ∈ (𝑂𝐴) → 𝑋𝑂)
2 indfval 32812 . . 3 ((𝑂𝑉𝐴𝑂𝑋𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋𝐴, 1, 0))
31, 2syl3an3 1165 . 2 ((𝑂𝑉𝐴𝑂𝑋 ∈ (𝑂𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋𝐴, 1, 0))
4 eldifn 4085 . . . 4 (𝑋 ∈ (𝑂𝐴) → ¬ 𝑋𝐴)
543ad2ant3 1135 . . 3 ((𝑂𝑉𝐴𝑂𝑋 ∈ (𝑂𝐴)) → ¬ 𝑋𝐴)
65iffalsed 4489 . 2 ((𝑂𝑉𝐴𝑂𝑋 ∈ (𝑂𝐴)) → if(𝑋𝐴, 1, 0) = 0)
73, 6eqtrd 2764 1 ((𝑂𝑉𝐴𝑂𝑋 ∈ (𝑂𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1086   = wceq 1540  wcel 2109  cdif 3902  wss 3905  ifcif 4478  cfv 6486  0cc0 11028  1c1 11029  𝟭cind 32806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-i2m1 11096  ax-1ne0 11097  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-ind 32807
This theorem is referenced by:  indsum  32817  indsumin  32818  elrgspnsubrunlem1  33200
  Copyright terms: Public domain W3C validator