![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ind0 | Structured version Visualization version GIF version |
Description: Value of the indicator function where it is 0. (Contributed by Thierry Arnoux, 14-Aug-2017.) |
Ref | Expression |
---|---|
ind0 | ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ (𝑂 ∖ 𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 4126 | . . 3 ⊢ (𝑋 ∈ (𝑂 ∖ 𝐴) → 𝑋 ∈ 𝑂) | |
2 | indfval 33479 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋 ∈ 𝐴, 1, 0)) | |
3 | 1, 2 | syl3an3 1164 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ (𝑂 ∖ 𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋 ∈ 𝐴, 1, 0)) |
4 | eldifn 4127 | . . . 4 ⊢ (𝑋 ∈ (𝑂 ∖ 𝐴) → ¬ 𝑋 ∈ 𝐴) | |
5 | 4 | 3ad2ant3 1134 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ (𝑂 ∖ 𝐴)) → ¬ 𝑋 ∈ 𝐴) |
6 | 5 | iffalsed 4539 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ (𝑂 ∖ 𝐴)) → if(𝑋 ∈ 𝐴, 1, 0) = 0) |
7 | 3, 6 | eqtrd 2771 | 1 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ (𝑂 ∖ 𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∖ cdif 3945 ⊆ wss 3948 ifcif 4528 ‘cfv 6543 0cc0 11116 1c1 11117 𝟭cind 33473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-i2m1 11184 ax-1ne0 11185 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-ind 33474 |
This theorem is referenced by: indsum 33484 indsumin 33485 |
Copyright terms: Public domain | W3C validator |