MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qdensere Structured version   Visualization version   GIF version

Theorem qdensere 23914
Description: is dense in the standard topology on . (Contributed by NM, 1-Mar-2007.)
Assertion
Ref Expression
qdensere ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ

Proof of Theorem qdensere
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 retop 23906 . . 3 (topGen‘ran (,)) ∈ Top
2 qssre 12681 . . 3 ℚ ⊆ ℝ
3 uniretop 23907 . . . 4 ℝ = (topGen‘ran (,))
43clsss3 22191 . . 3 (((topGen‘ran (,)) ∈ Top ∧ ℚ ⊆ ℝ) → ((cls‘(topGen‘ran (,)))‘ℚ) ⊆ ℝ)
51, 2, 4mp2an 688 . 2 ((cls‘(topGen‘ran (,)))‘ℚ) ⊆ ℝ
6 ioof 13161 . . . . . . 7 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
7 ffn 6596 . . . . . . 7 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
8 ovelrn 7439 . . . . . . 7 ((,) Fn (ℝ* × ℝ*) → (𝑦 ∈ ran (,) ↔ ∃𝑧 ∈ ℝ*𝑤 ∈ ℝ* 𝑦 = (𝑧(,)𝑤)))
96, 7, 8mp2b 10 . . . . . 6 (𝑦 ∈ ran (,) ↔ ∃𝑧 ∈ ℝ*𝑤 ∈ ℝ* 𝑦 = (𝑧(,)𝑤))
10 elioo3g 13090 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝑧(,)𝑤) ↔ ((𝑧 ∈ ℝ*𝑤 ∈ ℝ*𝑥 ∈ ℝ*) ∧ (𝑧 < 𝑥𝑥 < 𝑤)))
1110simplbi 497 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑧(,)𝑤) → (𝑧 ∈ ℝ*𝑤 ∈ ℝ*𝑥 ∈ ℝ*))
1211simp1d 1140 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑧(,)𝑤) → 𝑧 ∈ ℝ*)
1312ad2antrr 722 . . . . . . . . . . . . . 14 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → 𝑧 ∈ ℝ*)
1411simp2d 1141 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑧(,)𝑤) → 𝑤 ∈ ℝ*)
1514ad2antrr 722 . . . . . . . . . . . . . 14 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → 𝑤 ∈ ℝ*)
16 qre 12675 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℚ → 𝑦 ∈ ℝ)
1716ad2antlr 723 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → 𝑦 ∈ ℝ)
1817rexrd 11009 . . . . . . . . . . . . . 14 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → 𝑦 ∈ ℝ*)
1913, 15, 183jca 1126 . . . . . . . . . . . . 13 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → (𝑧 ∈ ℝ*𝑤 ∈ ℝ*𝑦 ∈ ℝ*))
20 simpr 484 . . . . . . . . . . . . 13 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → (𝑧 < 𝑦𝑦 < 𝑤))
21 elioo3g 13090 . . . . . . . . . . . . 13 (𝑦 ∈ (𝑧(,)𝑤) ↔ ((𝑧 ∈ ℝ*𝑤 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑧 < 𝑦𝑦 < 𝑤)))
2219, 20, 21sylanbrc 582 . . . . . . . . . . . 12 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → 𝑦 ∈ (𝑧(,)𝑤))
23 simplr 765 . . . . . . . . . . . 12 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → 𝑦 ∈ ℚ)
24 inelcm 4403 . . . . . . . . . . . 12 ((𝑦 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) → ((𝑧(,)𝑤) ∩ ℚ) ≠ ∅)
2522, 23, 24syl2anc 583 . . . . . . . . . . 11 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → ((𝑧(,)𝑤) ∩ ℚ) ≠ ∅)
2611simp3d 1142 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑧(,)𝑤) → 𝑥 ∈ ℝ*)
27 eliooord 13120 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑧(,)𝑤) → (𝑧 < 𝑥𝑥 < 𝑤))
2827simpld 494 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑧(,)𝑤) → 𝑧 < 𝑥)
2927simprd 495 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑧(,)𝑤) → 𝑥 < 𝑤)
3012, 26, 14, 28, 29xrlttrd 12875 . . . . . . . . . . . 12 (𝑥 ∈ (𝑧(,)𝑤) → 𝑧 < 𝑤)
31 qbtwnxr 12916 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ*𝑤 ∈ ℝ*𝑧 < 𝑤) → ∃𝑦 ∈ ℚ (𝑧 < 𝑦𝑦 < 𝑤))
3212, 14, 30, 31syl3anc 1369 . . . . . . . . . . 11 (𝑥 ∈ (𝑧(,)𝑤) → ∃𝑦 ∈ ℚ (𝑧 < 𝑦𝑦 < 𝑤))
3325, 32r19.29a 3219 . . . . . . . . . 10 (𝑥 ∈ (𝑧(,)𝑤) → ((𝑧(,)𝑤) ∩ ℚ) ≠ ∅)
3433a1i 11 . . . . . . . . 9 (𝑦 = (𝑧(,)𝑤) → (𝑥 ∈ (𝑧(,)𝑤) → ((𝑧(,)𝑤) ∩ ℚ) ≠ ∅))
35 eleq2 2828 . . . . . . . . 9 (𝑦 = (𝑧(,)𝑤) → (𝑥𝑦𝑥 ∈ (𝑧(,)𝑤)))
36 ineq1 4144 . . . . . . . . . 10 (𝑦 = (𝑧(,)𝑤) → (𝑦 ∩ ℚ) = ((𝑧(,)𝑤) ∩ ℚ))
3736neeq1d 3004 . . . . . . . . 9 (𝑦 = (𝑧(,)𝑤) → ((𝑦 ∩ ℚ) ≠ ∅ ↔ ((𝑧(,)𝑤) ∩ ℚ) ≠ ∅))
3834, 35, 373imtr4d 293 . . . . . . . 8 (𝑦 = (𝑧(,)𝑤) → (𝑥𝑦 → (𝑦 ∩ ℚ) ≠ ∅))
3938rexlimivw 3212 . . . . . . 7 (∃𝑤 ∈ ℝ* 𝑦 = (𝑧(,)𝑤) → (𝑥𝑦 → (𝑦 ∩ ℚ) ≠ ∅))
4039rexlimivw 3212 . . . . . 6 (∃𝑧 ∈ ℝ*𝑤 ∈ ℝ* 𝑦 = (𝑧(,)𝑤) → (𝑥𝑦 → (𝑦 ∩ ℚ) ≠ ∅))
419, 40sylbi 216 . . . . 5 (𝑦 ∈ ran (,) → (𝑥𝑦 → (𝑦 ∩ ℚ) ≠ ∅))
4241rgen 3075 . . . 4 𝑦 ∈ ran (,)(𝑥𝑦 → (𝑦 ∩ ℚ) ≠ ∅)
43 eqidd 2740 . . . . 5 (𝑥 ∈ ℝ → (topGen‘ran (,)) = (topGen‘ran (,)))
443a1i 11 . . . . 5 (𝑥 ∈ ℝ → ℝ = (topGen‘ran (,)))
45 retopbas 23905 . . . . . 6 ran (,) ∈ TopBases
4645a1i 11 . . . . 5 (𝑥 ∈ ℝ → ran (,) ∈ TopBases)
472a1i 11 . . . . 5 (𝑥 ∈ ℝ → ℚ ⊆ ℝ)
48 id 22 . . . . 5 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ)
4943, 44, 46, 47, 48elcls3 22215 . . . 4 (𝑥 ∈ ℝ → (𝑥 ∈ ((cls‘(topGen‘ran (,)))‘ℚ) ↔ ∀𝑦 ∈ ran (,)(𝑥𝑦 → (𝑦 ∩ ℚ) ≠ ∅)))
5042, 49mpbiri 257 . . 3 (𝑥 ∈ ℝ → 𝑥 ∈ ((cls‘(topGen‘ran (,)))‘ℚ))
5150ssriv 3929 . 2 ℝ ⊆ ((cls‘(topGen‘ran (,)))‘ℚ)
525, 51eqssi 3941 1 ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  wne 2944  wral 3065  wrex 3066  cin 3890  wss 3891  c0 4261  𝒫 cpw 4538   cuni 4844   class class class wbr 5078   × cxp 5586  ran crn 5589   Fn wfn 6425  wf 6426  cfv 6430  (class class class)co 7268  cr 10854  *cxr 10992   < clt 10993  cq 12670  (,)cioo 13061  topGenctg 17129  Topctop 22023  TopBasesctb 22076  clsccl 22150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-iin 4932  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-sup 9162  df-inf 9163  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-n0 12217  df-z 12303  df-uz 12565  df-q 12671  df-ioo 13065  df-topgen 17135  df-top 22024  df-bases 22077  df-cld 22151  df-ntr 22152  df-cls 22153
This theorem is referenced by:  qdensere2  23941  resscdrg  24503  ipasslem8  29178  rrhcn  31926  rrhre  31950
  Copyright terms: Public domain W3C validator