MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qdensere Structured version   Visualization version   GIF version

Theorem qdensere 24811
Description: is dense in the standard topology on . (Contributed by NM, 1-Mar-2007.)
Assertion
Ref Expression
qdensere ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ

Proof of Theorem qdensere
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 retop 24803 . . 3 (topGen‘ran (,)) ∈ Top
2 qssre 13024 . . 3 ℚ ⊆ ℝ
3 uniretop 24804 . . . 4 ℝ = (topGen‘ran (,))
43clsss3 23088 . . 3 (((topGen‘ran (,)) ∈ Top ∧ ℚ ⊆ ℝ) → ((cls‘(topGen‘ran (,)))‘ℚ) ⊆ ℝ)
51, 2, 4mp2an 691 . 2 ((cls‘(topGen‘ran (,)))‘ℚ) ⊆ ℝ
6 ioof 13507 . . . . . . 7 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
7 ffn 6747 . . . . . . 7 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
8 ovelrn 7626 . . . . . . 7 ((,) Fn (ℝ* × ℝ*) → (𝑦 ∈ ran (,) ↔ ∃𝑧 ∈ ℝ*𝑤 ∈ ℝ* 𝑦 = (𝑧(,)𝑤)))
96, 7, 8mp2b 10 . . . . . 6 (𝑦 ∈ ran (,) ↔ ∃𝑧 ∈ ℝ*𝑤 ∈ ℝ* 𝑦 = (𝑧(,)𝑤))
10 elioo3g 13436 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝑧(,)𝑤) ↔ ((𝑧 ∈ ℝ*𝑤 ∈ ℝ*𝑥 ∈ ℝ*) ∧ (𝑧 < 𝑥𝑥 < 𝑤)))
1110simplbi 497 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑧(,)𝑤) → (𝑧 ∈ ℝ*𝑤 ∈ ℝ*𝑥 ∈ ℝ*))
1211simp1d 1142 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑧(,)𝑤) → 𝑧 ∈ ℝ*)
1312ad2antrr 725 . . . . . . . . . . . . . 14 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → 𝑧 ∈ ℝ*)
1411simp2d 1143 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑧(,)𝑤) → 𝑤 ∈ ℝ*)
1514ad2antrr 725 . . . . . . . . . . . . . 14 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → 𝑤 ∈ ℝ*)
16 qre 13018 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℚ → 𝑦 ∈ ℝ)
1716ad2antlr 726 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → 𝑦 ∈ ℝ)
1817rexrd 11340 . . . . . . . . . . . . . 14 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → 𝑦 ∈ ℝ*)
1913, 15, 183jca 1128 . . . . . . . . . . . . 13 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → (𝑧 ∈ ℝ*𝑤 ∈ ℝ*𝑦 ∈ ℝ*))
20 simpr 484 . . . . . . . . . . . . 13 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → (𝑧 < 𝑦𝑦 < 𝑤))
21 elioo3g 13436 . . . . . . . . . . . . 13 (𝑦 ∈ (𝑧(,)𝑤) ↔ ((𝑧 ∈ ℝ*𝑤 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑧 < 𝑦𝑦 < 𝑤)))
2219, 20, 21sylanbrc 582 . . . . . . . . . . . 12 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → 𝑦 ∈ (𝑧(,)𝑤))
23 simplr 768 . . . . . . . . . . . 12 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → 𝑦 ∈ ℚ)
24 inelcm 4488 . . . . . . . . . . . 12 ((𝑦 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) → ((𝑧(,)𝑤) ∩ ℚ) ≠ ∅)
2522, 23, 24syl2anc 583 . . . . . . . . . . 11 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → ((𝑧(,)𝑤) ∩ ℚ) ≠ ∅)
2611simp3d 1144 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑧(,)𝑤) → 𝑥 ∈ ℝ*)
27 eliooord 13466 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑧(,)𝑤) → (𝑧 < 𝑥𝑥 < 𝑤))
2827simpld 494 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑧(,)𝑤) → 𝑧 < 𝑥)
2927simprd 495 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑧(,)𝑤) → 𝑥 < 𝑤)
3012, 26, 14, 28, 29xrlttrd 13221 . . . . . . . . . . . 12 (𝑥 ∈ (𝑧(,)𝑤) → 𝑧 < 𝑤)
31 qbtwnxr 13262 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ*𝑤 ∈ ℝ*𝑧 < 𝑤) → ∃𝑦 ∈ ℚ (𝑧 < 𝑦𝑦 < 𝑤))
3212, 14, 30, 31syl3anc 1371 . . . . . . . . . . 11 (𝑥 ∈ (𝑧(,)𝑤) → ∃𝑦 ∈ ℚ (𝑧 < 𝑦𝑦 < 𝑤))
3325, 32r19.29a 3168 . . . . . . . . . 10 (𝑥 ∈ (𝑧(,)𝑤) → ((𝑧(,)𝑤) ∩ ℚ) ≠ ∅)
3433a1i 11 . . . . . . . . 9 (𝑦 = (𝑧(,)𝑤) → (𝑥 ∈ (𝑧(,)𝑤) → ((𝑧(,)𝑤) ∩ ℚ) ≠ ∅))
35 eleq2 2833 . . . . . . . . 9 (𝑦 = (𝑧(,)𝑤) → (𝑥𝑦𝑥 ∈ (𝑧(,)𝑤)))
36 ineq1 4234 . . . . . . . . . 10 (𝑦 = (𝑧(,)𝑤) → (𝑦 ∩ ℚ) = ((𝑧(,)𝑤) ∩ ℚ))
3736neeq1d 3006 . . . . . . . . 9 (𝑦 = (𝑧(,)𝑤) → ((𝑦 ∩ ℚ) ≠ ∅ ↔ ((𝑧(,)𝑤) ∩ ℚ) ≠ ∅))
3834, 35, 373imtr4d 294 . . . . . . . 8 (𝑦 = (𝑧(,)𝑤) → (𝑥𝑦 → (𝑦 ∩ ℚ) ≠ ∅))
3938rexlimivw 3157 . . . . . . 7 (∃𝑤 ∈ ℝ* 𝑦 = (𝑧(,)𝑤) → (𝑥𝑦 → (𝑦 ∩ ℚ) ≠ ∅))
4039rexlimivw 3157 . . . . . 6 (∃𝑧 ∈ ℝ*𝑤 ∈ ℝ* 𝑦 = (𝑧(,)𝑤) → (𝑥𝑦 → (𝑦 ∩ ℚ) ≠ ∅))
419, 40sylbi 217 . . . . 5 (𝑦 ∈ ran (,) → (𝑥𝑦 → (𝑦 ∩ ℚ) ≠ ∅))
4241rgen 3069 . . . 4 𝑦 ∈ ran (,)(𝑥𝑦 → (𝑦 ∩ ℚ) ≠ ∅)
43 eqidd 2741 . . . . 5 (𝑥 ∈ ℝ → (topGen‘ran (,)) = (topGen‘ran (,)))
443a1i 11 . . . . 5 (𝑥 ∈ ℝ → ℝ = (topGen‘ran (,)))
45 retopbas 24802 . . . . . 6 ran (,) ∈ TopBases
4645a1i 11 . . . . 5 (𝑥 ∈ ℝ → ran (,) ∈ TopBases)
472a1i 11 . . . . 5 (𝑥 ∈ ℝ → ℚ ⊆ ℝ)
48 id 22 . . . . 5 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ)
4943, 44, 46, 47, 48elcls3 23112 . . . 4 (𝑥 ∈ ℝ → (𝑥 ∈ ((cls‘(topGen‘ran (,)))‘ℚ) ↔ ∀𝑦 ∈ ran (,)(𝑥𝑦 → (𝑦 ∩ ℚ) ≠ ∅)))
5042, 49mpbiri 258 . . 3 (𝑥 ∈ ℝ → 𝑥 ∈ ((cls‘(topGen‘ran (,)))‘ℚ))
5150ssriv 4012 . 2 ℝ ⊆ ((cls‘(topGen‘ran (,)))‘ℚ)
525, 51eqssi 4025 1 ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622   cuni 4931   class class class wbr 5166   × cxp 5698  ran crn 5701   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cr 11183  *cxr 11323   < clt 11324  cq 13013  (,)cioo 13407  topGenctg 17497  Topctop 22920  TopBasesctb 22973  clsccl 23047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-ioo 13411  df-topgen 17503  df-top 22921  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050
This theorem is referenced by:  qdensere2  24838  resscdrg  25411  ipasslem8  30869  rrhcn  33943  rrhre  33967
  Copyright terms: Public domain W3C validator