MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qdensere Structured version   Visualization version   GIF version

Theorem qdensere 24655
Description: is dense in the standard topology on . (Contributed by NM, 1-Mar-2007.)
Assertion
Ref Expression
qdensere ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ

Proof of Theorem qdensere
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 retop 24647 . . 3 (topGen‘ran (,)) ∈ Top
2 qssre 12860 . . 3 ℚ ⊆ ℝ
3 uniretop 24648 . . . 4 ℝ = (topGen‘ran (,))
43clsss3 22944 . . 3 (((topGen‘ran (,)) ∈ Top ∧ ℚ ⊆ ℝ) → ((cls‘(topGen‘ran (,)))‘ℚ) ⊆ ℝ)
51, 2, 4mp2an 692 . 2 ((cls‘(topGen‘ran (,)))‘ℚ) ⊆ ℝ
6 ioof 13350 . . . . . . 7 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
7 ffn 6652 . . . . . . 7 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
8 ovelrn 7525 . . . . . . 7 ((,) Fn (ℝ* × ℝ*) → (𝑦 ∈ ran (,) ↔ ∃𝑧 ∈ ℝ*𝑤 ∈ ℝ* 𝑦 = (𝑧(,)𝑤)))
96, 7, 8mp2b 10 . . . . . 6 (𝑦 ∈ ran (,) ↔ ∃𝑧 ∈ ℝ*𝑤 ∈ ℝ* 𝑦 = (𝑧(,)𝑤))
10 elioo3g 13277 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝑧(,)𝑤) ↔ ((𝑧 ∈ ℝ*𝑤 ∈ ℝ*𝑥 ∈ ℝ*) ∧ (𝑧 < 𝑥𝑥 < 𝑤)))
1110simplbi 497 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑧(,)𝑤) → (𝑧 ∈ ℝ*𝑤 ∈ ℝ*𝑥 ∈ ℝ*))
1211simp1d 1142 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑧(,)𝑤) → 𝑧 ∈ ℝ*)
1312ad2antrr 726 . . . . . . . . . . . . . 14 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → 𝑧 ∈ ℝ*)
1411simp2d 1143 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑧(,)𝑤) → 𝑤 ∈ ℝ*)
1514ad2antrr 726 . . . . . . . . . . . . . 14 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → 𝑤 ∈ ℝ*)
16 qre 12854 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℚ → 𝑦 ∈ ℝ)
1716ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → 𝑦 ∈ ℝ)
1817rexrd 11165 . . . . . . . . . . . . . 14 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → 𝑦 ∈ ℝ*)
1913, 15, 183jca 1128 . . . . . . . . . . . . 13 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → (𝑧 ∈ ℝ*𝑤 ∈ ℝ*𝑦 ∈ ℝ*))
20 simpr 484 . . . . . . . . . . . . 13 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → (𝑧 < 𝑦𝑦 < 𝑤))
21 elioo3g 13277 . . . . . . . . . . . . 13 (𝑦 ∈ (𝑧(,)𝑤) ↔ ((𝑧 ∈ ℝ*𝑤 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑧 < 𝑦𝑦 < 𝑤)))
2219, 20, 21sylanbrc 583 . . . . . . . . . . . 12 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → 𝑦 ∈ (𝑧(,)𝑤))
23 simplr 768 . . . . . . . . . . . 12 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → 𝑦 ∈ ℚ)
24 inelcm 4416 . . . . . . . . . . . 12 ((𝑦 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) → ((𝑧(,)𝑤) ∩ ℚ) ≠ ∅)
2522, 23, 24syl2anc 584 . . . . . . . . . . 11 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → ((𝑧(,)𝑤) ∩ ℚ) ≠ ∅)
2611simp3d 1144 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑧(,)𝑤) → 𝑥 ∈ ℝ*)
27 eliooord 13308 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑧(,)𝑤) → (𝑧 < 𝑥𝑥 < 𝑤))
2827simpld 494 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑧(,)𝑤) → 𝑧 < 𝑥)
2927simprd 495 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑧(,)𝑤) → 𝑥 < 𝑤)
3012, 26, 14, 28, 29xrlttrd 13061 . . . . . . . . . . . 12 (𝑥 ∈ (𝑧(,)𝑤) → 𝑧 < 𝑤)
31 qbtwnxr 13102 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ*𝑤 ∈ ℝ*𝑧 < 𝑤) → ∃𝑦 ∈ ℚ (𝑧 < 𝑦𝑦 < 𝑤))
3212, 14, 30, 31syl3anc 1373 . . . . . . . . . . 11 (𝑥 ∈ (𝑧(,)𝑤) → ∃𝑦 ∈ ℚ (𝑧 < 𝑦𝑦 < 𝑤))
3325, 32r19.29a 3137 . . . . . . . . . 10 (𝑥 ∈ (𝑧(,)𝑤) → ((𝑧(,)𝑤) ∩ ℚ) ≠ ∅)
3433a1i 11 . . . . . . . . 9 (𝑦 = (𝑧(,)𝑤) → (𝑥 ∈ (𝑧(,)𝑤) → ((𝑧(,)𝑤) ∩ ℚ) ≠ ∅))
35 eleq2 2817 . . . . . . . . 9 (𝑦 = (𝑧(,)𝑤) → (𝑥𝑦𝑥 ∈ (𝑧(,)𝑤)))
36 ineq1 4164 . . . . . . . . . 10 (𝑦 = (𝑧(,)𝑤) → (𝑦 ∩ ℚ) = ((𝑧(,)𝑤) ∩ ℚ))
3736neeq1d 2984 . . . . . . . . 9 (𝑦 = (𝑧(,)𝑤) → ((𝑦 ∩ ℚ) ≠ ∅ ↔ ((𝑧(,)𝑤) ∩ ℚ) ≠ ∅))
3834, 35, 373imtr4d 294 . . . . . . . 8 (𝑦 = (𝑧(,)𝑤) → (𝑥𝑦 → (𝑦 ∩ ℚ) ≠ ∅))
3938rexlimivw 3126 . . . . . . 7 (∃𝑤 ∈ ℝ* 𝑦 = (𝑧(,)𝑤) → (𝑥𝑦 → (𝑦 ∩ ℚ) ≠ ∅))
4039rexlimivw 3126 . . . . . 6 (∃𝑧 ∈ ℝ*𝑤 ∈ ℝ* 𝑦 = (𝑧(,)𝑤) → (𝑥𝑦 → (𝑦 ∩ ℚ) ≠ ∅))
419, 40sylbi 217 . . . . 5 (𝑦 ∈ ran (,) → (𝑥𝑦 → (𝑦 ∩ ℚ) ≠ ∅))
4241rgen 3046 . . . 4 𝑦 ∈ ran (,)(𝑥𝑦 → (𝑦 ∩ ℚ) ≠ ∅)
43 eqidd 2730 . . . . 5 (𝑥 ∈ ℝ → (topGen‘ran (,)) = (topGen‘ran (,)))
443a1i 11 . . . . 5 (𝑥 ∈ ℝ → ℝ = (topGen‘ran (,)))
45 retopbas 24646 . . . . . 6 ran (,) ∈ TopBases
4645a1i 11 . . . . 5 (𝑥 ∈ ℝ → ran (,) ∈ TopBases)
472a1i 11 . . . . 5 (𝑥 ∈ ℝ → ℚ ⊆ ℝ)
48 id 22 . . . . 5 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ)
4943, 44, 46, 47, 48elcls3 22968 . . . 4 (𝑥 ∈ ℝ → (𝑥 ∈ ((cls‘(topGen‘ran (,)))‘ℚ) ↔ ∀𝑦 ∈ ran (,)(𝑥𝑦 → (𝑦 ∩ ℚ) ≠ ∅)))
5042, 49mpbiri 258 . . 3 (𝑥 ∈ ℝ → 𝑥 ∈ ((cls‘(topGen‘ran (,)))‘ℚ))
5150ssriv 3939 . 2 ℝ ⊆ ((cls‘(topGen‘ran (,)))‘ℚ)
525, 51eqssi 3952 1 ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cin 3902  wss 3903  c0 4284  𝒫 cpw 4551   cuni 4858   class class class wbr 5092   × cxp 5617  ran crn 5620   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  cr 11008  *cxr 11148   < clt 11149  cq 12849  (,)cioo 13248  topGenctg 17341  Topctop 22778  TopBasesctb 22830  clsccl 22903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-ioo 13252  df-topgen 17347  df-top 22779  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906
This theorem is referenced by:  qdensere2  24683  resscdrg  25256  ipasslem8  30781  rrhcn  33964  rrhre  33988
  Copyright terms: Public domain W3C validator