| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > conncompclo | Structured version Visualization version GIF version | ||
| Description: The connected component containing 𝐴 is a subset of any clopen set containing 𝐴. (Contributed by Mario Carneiro, 20-Sep-2015.) |
| Ref | Expression |
|---|---|
| conncomp.2 | ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} |
| Ref | Expression |
|---|---|
| conncompclo | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴 ∈ 𝑇) → 𝑆 ⊆ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . 2 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | simp1 1136 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴 ∈ 𝑇) → 𝐽 ∈ (TopOn‘𝑋)) | |
| 3 | simp2 1137 | . . . . . . 7 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴 ∈ 𝑇) → 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽))) | |
| 4 | 3 | elin1d 4184 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴 ∈ 𝑇) → 𝑇 ∈ 𝐽) |
| 5 | toponss 22870 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ 𝐽) → 𝑇 ⊆ 𝑋) | |
| 6 | 2, 4, 5 | syl2anc 584 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴 ∈ 𝑇) → 𝑇 ⊆ 𝑋) |
| 7 | simp3 1138 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴 ∈ 𝑇) → 𝐴 ∈ 𝑇) | |
| 8 | 6, 7 | sseldd 3964 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴 ∈ 𝑇) → 𝐴 ∈ 𝑋) |
| 9 | conncomp.2 | . . . . 5 ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} | |
| 10 | 9 | conncompcld 23377 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝑆 ∈ (Clsd‘𝐽)) |
| 11 | 2, 8, 10 | syl2anc 584 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴 ∈ 𝑇) → 𝑆 ∈ (Clsd‘𝐽)) |
| 12 | 1 | cldss 22972 | . . 3 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ ∪ 𝐽) |
| 13 | 11, 12 | syl 17 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴 ∈ 𝑇) → 𝑆 ⊆ ∪ 𝐽) |
| 14 | 9 | conncompconn 23375 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐽 ↾t 𝑆) ∈ Conn) |
| 15 | 2, 8, 14 | syl2anc 584 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴 ∈ 𝑇) → (𝐽 ↾t 𝑆) ∈ Conn) |
| 16 | 9 | conncompid 23374 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑆) |
| 17 | 2, 8, 16 | syl2anc 584 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴 ∈ 𝑇) → 𝐴 ∈ 𝑆) |
| 18 | inelcm 4445 | . . 3 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝐴 ∈ 𝑆) → (𝑇 ∩ 𝑆) ≠ ∅) | |
| 19 | 7, 17, 18 | syl2anc 584 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴 ∈ 𝑇) → (𝑇 ∩ 𝑆) ≠ ∅) |
| 20 | 3 | elin2d 4185 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴 ∈ 𝑇) → 𝑇 ∈ (Clsd‘𝐽)) |
| 21 | 1, 13, 15, 4, 19, 20 | connsubclo 23367 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴 ∈ 𝑇) → 𝑆 ⊆ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 {crab 3420 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 𝒫 cpw 4580 ∪ cuni 4888 ‘cfv 6536 (class class class)co 7410 ↾t crest 17439 TopOnctopon 22853 Clsdccld 22959 Conncconn 23354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-en 8965 df-fin 8968 df-fi 9428 df-rest 17441 df-topgen 17462 df-top 22837 df-topon 22854 df-bases 22889 df-cld 22962 df-ntr 22963 df-cls 22964 df-conn 23355 |
| This theorem is referenced by: tgpconncompss 24057 |
| Copyright terms: Public domain | W3C validator |