MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conncompclo Structured version   Visualization version   GIF version

Theorem conncompclo 23388
Description: The connected component containing 𝐴 is a subset of any clopen set containing 𝐴. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypothesis
Ref Expression
conncomp.2 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
Assertion
Ref Expression
conncompclo ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴𝑇) → 𝑆𝑇)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽   𝑥,𝑋
Allowed substitution hints:   𝑆(𝑥)   𝑇(𝑥)

Proof of Theorem conncompclo
StepHypRef Expression
1 eqid 2725 . 2 𝐽 = 𝐽
2 simp1 1133 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴𝑇) → 𝐽 ∈ (TopOn‘𝑋))
3 simp2 1134 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴𝑇) → 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)))
43elin1d 4196 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴𝑇) → 𝑇𝐽)
5 toponss 22878 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇𝐽) → 𝑇𝑋)
62, 4, 5syl2anc 582 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴𝑇) → 𝑇𝑋)
7 simp3 1135 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴𝑇) → 𝐴𝑇)
86, 7sseldd 3977 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴𝑇) → 𝐴𝑋)
9 conncomp.2 . . . . 5 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
109conncompcld 23387 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑆 ∈ (Clsd‘𝐽))
112, 8, 10syl2anc 582 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴𝑇) → 𝑆 ∈ (Clsd‘𝐽))
121cldss 22982 . . 3 (𝑆 ∈ (Clsd‘𝐽) → 𝑆 𝐽)
1311, 12syl 17 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴𝑇) → 𝑆 𝐽)
149conncompconn 23385 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝑆) ∈ Conn)
152, 8, 14syl2anc 582 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴𝑇) → (𝐽t 𝑆) ∈ Conn)
169conncompid 23384 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴𝑆)
172, 8, 16syl2anc 582 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴𝑇) → 𝐴𝑆)
18 inelcm 4466 . . 3 ((𝐴𝑇𝐴𝑆) → (𝑇𝑆) ≠ ∅)
197, 17, 18syl2anc 582 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴𝑇) → (𝑇𝑆) ≠ ∅)
203elin2d 4197 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴𝑇) → 𝑇 ∈ (Clsd‘𝐽))
211, 13, 15, 4, 19, 20connsubclo 23377 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴𝑇) → 𝑆𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2929  {crab 3418  cin 3943  wss 3944  c0 4322  𝒫 cpw 4604   cuni 4909  cfv 6549  (class class class)co 7419  t crest 17410  TopOnctopon 22861  Clsdccld 22969  Conncconn 23364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-en 8965  df-fin 8968  df-fi 9441  df-rest 17412  df-topgen 17433  df-top 22845  df-topon 22862  df-bases 22898  df-cld 22972  df-ntr 22973  df-cls 22974  df-conn 23365
This theorem is referenced by:  tgpconncompss  24067
  Copyright terms: Public domain W3C validator