Step | Hyp | Ref
| Expression |
1 | | eqid 2731 |
. 2
β’ βͺ π½ =
βͺ π½ |
2 | | simp1 1135 |
. . . 4
β’ ((π½ β (TopOnβπ) β§ π β (π½ β© (Clsdβπ½)) β§ π΄ β π) β π½ β (TopOnβπ)) |
3 | | simp2 1136 |
. . . . . . 7
β’ ((π½ β (TopOnβπ) β§ π β (π½ β© (Clsdβπ½)) β§ π΄ β π) β π β (π½ β© (Clsdβπ½))) |
4 | 3 | elin1d 4199 |
. . . . . 6
β’ ((π½ β (TopOnβπ) β§ π β (π½ β© (Clsdβπ½)) β§ π΄ β π) β π β π½) |
5 | | toponss 22650 |
. . . . . 6
β’ ((π½ β (TopOnβπ) β§ π β π½) β π β π) |
6 | 2, 4, 5 | syl2anc 583 |
. . . . 5
β’ ((π½ β (TopOnβπ) β§ π β (π½ β© (Clsdβπ½)) β§ π΄ β π) β π β π) |
7 | | simp3 1137 |
. . . . 5
β’ ((π½ β (TopOnβπ) β§ π β (π½ β© (Clsdβπ½)) β§ π΄ β π) β π΄ β π) |
8 | 6, 7 | sseldd 3984 |
. . . 4
β’ ((π½ β (TopOnβπ) β§ π β (π½ β© (Clsdβπ½)) β§ π΄ β π) β π΄ β π) |
9 | | conncomp.2 |
. . . . 5
β’ π = βͺ
{π₯ β π« π β£ (π΄ β π₯ β§ (π½ βΎt π₯) β Conn)} |
10 | 9 | conncompcld 23159 |
. . . 4
β’ ((π½ β (TopOnβπ) β§ π΄ β π) β π β (Clsdβπ½)) |
11 | 2, 8, 10 | syl2anc 583 |
. . 3
β’ ((π½ β (TopOnβπ) β§ π β (π½ β© (Clsdβπ½)) β§ π΄ β π) β π β (Clsdβπ½)) |
12 | 1 | cldss 22754 |
. . 3
β’ (π β (Clsdβπ½) β π β βͺ π½) |
13 | 11, 12 | syl 17 |
. 2
β’ ((π½ β (TopOnβπ) β§ π β (π½ β© (Clsdβπ½)) β§ π΄ β π) β π β βͺ π½) |
14 | 9 | conncompconn 23157 |
. . 3
β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π½ βΎt π) β Conn) |
15 | 2, 8, 14 | syl2anc 583 |
. 2
β’ ((π½ β (TopOnβπ) β§ π β (π½ β© (Clsdβπ½)) β§ π΄ β π) β (π½ βΎt π) β Conn) |
16 | 9 | conncompid 23156 |
. . . 4
β’ ((π½ β (TopOnβπ) β§ π΄ β π) β π΄ β π) |
17 | 2, 8, 16 | syl2anc 583 |
. . 3
β’ ((π½ β (TopOnβπ) β§ π β (π½ β© (Clsdβπ½)) β§ π΄ β π) β π΄ β π) |
18 | | inelcm 4465 |
. . 3
β’ ((π΄ β π β§ π΄ β π) β (π β© π) β β
) |
19 | 7, 17, 18 | syl2anc 583 |
. 2
β’ ((π½ β (TopOnβπ) β§ π β (π½ β© (Clsdβπ½)) β§ π΄ β π) β (π β© π) β β
) |
20 | 3 | elin2d 4200 |
. 2
β’ ((π½ β (TopOnβπ) β§ π β (π½ β© (Clsdβπ½)) β§ π΄ β π) β π β (Clsdβπ½)) |
21 | 1, 13, 15, 4, 19, 20 | connsubclo 23149 |
1
β’ ((π½ β (TopOnβπ) β§ π β (π½ β© (Clsdβπ½)) β§ π΄ β π) β π β π) |