Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > conncompclo | Structured version Visualization version GIF version |
Description: The connected component containing 𝐴 is a subset of any clopen set containing 𝐴. (Contributed by Mario Carneiro, 20-Sep-2015.) |
Ref | Expression |
---|---|
conncomp.2 | ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} |
Ref | Expression |
---|---|
conncompclo | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴 ∈ 𝑇) → 𝑆 ⊆ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . 2 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | simp1 1134 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴 ∈ 𝑇) → 𝐽 ∈ (TopOn‘𝑋)) | |
3 | simp2 1135 | . . . . . . 7 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴 ∈ 𝑇) → 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽))) | |
4 | 3 | elin1d 4135 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴 ∈ 𝑇) → 𝑇 ∈ 𝐽) |
5 | toponss 22104 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ 𝐽) → 𝑇 ⊆ 𝑋) | |
6 | 2, 4, 5 | syl2anc 583 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴 ∈ 𝑇) → 𝑇 ⊆ 𝑋) |
7 | simp3 1136 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴 ∈ 𝑇) → 𝐴 ∈ 𝑇) | |
8 | 6, 7 | sseldd 3924 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴 ∈ 𝑇) → 𝐴 ∈ 𝑋) |
9 | conncomp.2 | . . . . 5 ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} | |
10 | 9 | conncompcld 22613 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝑆 ∈ (Clsd‘𝐽)) |
11 | 2, 8, 10 | syl2anc 583 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴 ∈ 𝑇) → 𝑆 ∈ (Clsd‘𝐽)) |
12 | 1 | cldss 22208 | . . 3 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ ∪ 𝐽) |
13 | 11, 12 | syl 17 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴 ∈ 𝑇) → 𝑆 ⊆ ∪ 𝐽) |
14 | 9 | conncompconn 22611 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐽 ↾t 𝑆) ∈ Conn) |
15 | 2, 8, 14 | syl2anc 583 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴 ∈ 𝑇) → (𝐽 ↾t 𝑆) ∈ Conn) |
16 | 9 | conncompid 22610 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑆) |
17 | 2, 8, 16 | syl2anc 583 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴 ∈ 𝑇) → 𝐴 ∈ 𝑆) |
18 | inelcm 4401 | . . 3 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝐴 ∈ 𝑆) → (𝑇 ∩ 𝑆) ≠ ∅) | |
19 | 7, 17, 18 | syl2anc 583 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴 ∈ 𝑇) → (𝑇 ∩ 𝑆) ≠ ∅) |
20 | 3 | elin2d 4136 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴 ∈ 𝑇) → 𝑇 ∈ (Clsd‘𝐽)) |
21 | 1, 13, 15, 4, 19, 20 | connsubclo 22603 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴 ∈ 𝑇) → 𝑆 ⊆ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1537 ∈ wcel 2101 ≠ wne 2938 {crab 3221 ∩ cin 3888 ⊆ wss 3889 ∅c0 4259 𝒫 cpw 4536 ∪ cuni 4841 ‘cfv 6447 (class class class)co 7295 ↾t crest 17159 TopOnctopon 22087 Clsdccld 22195 Conncconn 22590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-int 4883 df-iun 4929 df-iin 4930 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-1st 7851 df-2nd 7852 df-en 8754 df-fin 8757 df-fi 9198 df-rest 17161 df-topgen 17182 df-top 22071 df-topon 22088 df-bases 22124 df-cld 22198 df-ntr 22199 df-cls 22200 df-conn 22591 |
This theorem is referenced by: tgpconncompss 23293 |
Copyright terms: Public domain | W3C validator |