MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmcls Structured version   Visualization version   GIF version

Theorem lmcls 21907
Description: Any convergent sequence of points in a subset of a topological space converges to a point in the closure of the subset. (Contributed by Mario Carneiro, 30-Dec-2013.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmff.1 𝑍 = (ℤ𝑀)
lmff.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
lmff.4 (𝜑𝑀 ∈ ℤ)
lmcls.5 (𝜑𝐹(⇝𝑡𝐽)𝑃)
lmcls.7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ 𝑆)
lmcls.8 (𝜑𝑆𝑋)
Assertion
Ref Expression
lmcls (𝜑𝑃 ∈ ((cls‘𝐽)‘𝑆))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐽   𝑘,𝑀   𝑃,𝑘   𝑆,𝑘   𝜑,𝑘   𝑘,𝑋   𝑘,𝑍

Proof of Theorem lmcls
Dummy variables 𝑗 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmcls.5 . . . . 5 (𝜑𝐹(⇝𝑡𝐽)𝑃)
2 lmff.3 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 lmff.1 . . . . . 6 𝑍 = (ℤ𝑀)
4 lmff.4 . . . . . 6 (𝜑𝑀 ∈ ℤ)
52, 3, 4lmbr2 21864 . . . . 5 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
61, 5mpbid 235 . . . 4 (𝜑 → (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
76simp3d 1141 . . 3 (𝜑 → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
83r19.2uz 14703 . . . . . 6 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) → ∃𝑘𝑍 (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
9 lmcls.7 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ 𝑆)
10 inelcm 4372 . . . . . . . . . 10 (((𝐹𝑘) ∈ 𝑢 ∧ (𝐹𝑘) ∈ 𝑆) → (𝑢𝑆) ≠ ∅)
1110a1i 11 . . . . . . . . 9 ((𝜑𝑘𝑍) → (((𝐹𝑘) ∈ 𝑢 ∧ (𝐹𝑘) ∈ 𝑆) → (𝑢𝑆) ≠ ∅))
129, 11mpan2d 693 . . . . . . . 8 ((𝜑𝑘𝑍) → ((𝐹𝑘) ∈ 𝑢 → (𝑢𝑆) ≠ ∅))
1312adantld 494 . . . . . . 7 ((𝜑𝑘𝑍) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) → (𝑢𝑆) ≠ ∅))
1413rexlimdva 3243 . . . . . 6 (𝜑 → (∃𝑘𝑍 (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) → (𝑢𝑆) ≠ ∅))
158, 14syl5 34 . . . . 5 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) → (𝑢𝑆) ≠ ∅))
1615imim2d 57 . . . 4 (𝜑 → ((𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) → (𝑃𝑢 → (𝑢𝑆) ≠ ∅)))
1716ralimdv 3145 . . 3 (𝜑 → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) → ∀𝑢𝐽 (𝑃𝑢 → (𝑢𝑆) ≠ ∅)))
187, 17mpd 15 . 2 (𝜑 → ∀𝑢𝐽 (𝑃𝑢 → (𝑢𝑆) ≠ ∅))
19 topontop 21518 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
202, 19syl 17 . . 3 (𝜑𝐽 ∈ Top)
21 lmcls.8 . . . 4 (𝜑𝑆𝑋)
22 toponuni 21519 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
232, 22syl 17 . . . 4 (𝜑𝑋 = 𝐽)
2421, 23sseqtrd 3955 . . 3 (𝜑𝑆 𝐽)
25 lmcl 21902 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡𝐽)𝑃) → 𝑃𝑋)
262, 1, 25syl2anc 587 . . . 4 (𝜑𝑃𝑋)
2726, 23eleqtrd 2892 . . 3 (𝜑𝑃 𝐽)
28 eqid 2798 . . . 4 𝐽 = 𝐽
2928elcls 21678 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽𝑃 𝐽) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑢𝐽 (𝑃𝑢 → (𝑢𝑆) ≠ ∅)))
3020, 24, 27, 29syl3anc 1368 . 2 (𝜑 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑢𝐽 (𝑃𝑢 → (𝑢𝑆) ≠ ∅)))
3118, 30mpbird 260 1 (𝜑𝑃 ∈ ((cls‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  cin 3880  wss 3881  c0 4243   cuni 4800   class class class wbr 5030  dom cdm 5519  cfv 6324  (class class class)co 7135  pm cpm 8390  cc 10524  cz 11969  cuz 12231  Topctop 21498  TopOnctopon 21515  clsccl 21623  𝑡clm 21831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-er 8272  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-neg 10862  df-z 11970  df-uz 12232  df-top 21499  df-topon 21516  df-cld 21624  df-ntr 21625  df-cls 21626  df-lm 21834
This theorem is referenced by:  lmcld  21908  1stcelcls  22066  caublcls  23913
  Copyright terms: Public domain W3C validator