Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmcls | Structured version Visualization version GIF version |
Description: Any convergent sequence of points in a subset of a topological space converges to a point in the closure of the subset. (Contributed by Mario Carneiro, 30-Dec-2013.) (Revised by Mario Carneiro, 1-May-2014.) |
Ref | Expression |
---|---|
lmff.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
lmff.3 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
lmff.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
lmcls.5 | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) |
lmcls.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ 𝑆) |
lmcls.8 | ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
Ref | Expression |
---|---|
lmcls | ⊢ (𝜑 → 𝑃 ∈ ((cls‘𝐽)‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmcls.5 | . . . . 5 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | |
2 | lmff.3 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
3 | lmff.1 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | lmff.4 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
5 | 2, 3, 4 | lmbr2 22318 | . . . . 5 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) |
6 | 1, 5 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)))) |
7 | 6 | simp3d 1142 | . . 3 ⊢ (𝜑 → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) |
8 | 3 | r19.2uz 14991 | . . . . . 6 ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) → ∃𝑘 ∈ 𝑍 (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)) |
9 | lmcls.7 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ 𝑆) | |
10 | inelcm 4395 | . . . . . . . . . 10 ⊢ (((𝐹‘𝑘) ∈ 𝑢 ∧ (𝐹‘𝑘) ∈ 𝑆) → (𝑢 ∩ 𝑆) ≠ ∅) | |
11 | 10 | a1i 11 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((𝐹‘𝑘) ∈ 𝑢 ∧ (𝐹‘𝑘) ∈ 𝑆) → (𝑢 ∩ 𝑆) ≠ ∅)) |
12 | 9, 11 | mpan2d 690 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) ∈ 𝑢 → (𝑢 ∩ 𝑆) ≠ ∅)) |
13 | 12 | adantld 490 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) → (𝑢 ∩ 𝑆) ≠ ∅)) |
14 | 13 | rexlimdva 3212 | . . . . . 6 ⊢ (𝜑 → (∃𝑘 ∈ 𝑍 (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) → (𝑢 ∩ 𝑆) ≠ ∅)) |
15 | 8, 14 | syl5 34 | . . . . 5 ⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) → (𝑢 ∩ 𝑆) ≠ ∅)) |
16 | 15 | imim2d 57 | . . . 4 ⊢ (𝜑 → ((𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)) → (𝑃 ∈ 𝑢 → (𝑢 ∩ 𝑆) ≠ ∅))) |
17 | 16 | ralimdv 3103 | . . 3 ⊢ (𝜑 → (∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)) → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → (𝑢 ∩ 𝑆) ≠ ∅))) |
18 | 7, 17 | mpd 15 | . 2 ⊢ (𝜑 → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → (𝑢 ∩ 𝑆) ≠ ∅)) |
19 | topontop 21970 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
20 | 2, 19 | syl 17 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) |
21 | lmcls.8 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) | |
22 | toponuni 21971 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
23 | 2, 22 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
24 | 21, 23 | sseqtrd 3957 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) |
25 | lmcl 22356 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝑃 ∈ 𝑋) | |
26 | 2, 1, 25 | syl2anc 583 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ 𝑋) |
27 | 26, 23 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → 𝑃 ∈ ∪ 𝐽) |
28 | eqid 2738 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
29 | 28 | elcls 22132 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ∧ 𝑃 ∈ ∪ 𝐽) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → (𝑢 ∩ 𝑆) ≠ ∅))) |
30 | 20, 24, 27, 29 | syl3anc 1369 | . 2 ⊢ (𝜑 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → (𝑢 ∩ 𝑆) ≠ ∅))) |
31 | 18, 30 | mpbird 256 | 1 ⊢ (𝜑 → 𝑃 ∈ ((cls‘𝐽)‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 ∪ cuni 4836 class class class wbr 5070 dom cdm 5580 ‘cfv 6418 (class class class)co 7255 ↑pm cpm 8574 ℂcc 10800 ℤcz 12249 ℤ≥cuz 12511 Topctop 21950 TopOnctopon 21967 clsccl 22077 ⇝𝑡clm 22285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-er 8456 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-neg 11138 df-z 12250 df-uz 12512 df-top 21951 df-topon 21968 df-cld 22078 df-ntr 22079 df-cls 22080 df-lm 22288 |
This theorem is referenced by: lmcld 22362 1stcelcls 22520 caublcls 24378 |
Copyright terms: Public domain | W3C validator |