Step | Hyp | Ref
| Expression |
1 | | lmcls.5 |
. . . . 5
β’ (π β πΉ(βπ‘βπ½)π) |
2 | | lmff.3 |
. . . . . 6
β’ (π β π½ β (TopOnβπ)) |
3 | | lmff.1 |
. . . . . 6
β’ π =
(β€β₯βπ) |
4 | | lmff.4 |
. . . . . 6
β’ (π β π β β€) |
5 | 2, 3, 4 | lmbr2 22763 |
. . . . 5
β’ (π β (πΉ(βπ‘βπ½)π β (πΉ β (π βpm β) β§ π β π β§ βπ’ β π½ (π β π’ β βπ β π βπ β (β€β₯βπ)(π β dom πΉ β§ (πΉβπ) β π’))))) |
6 | 1, 5 | mpbid 231 |
. . . 4
β’ (π β (πΉ β (π βpm β) β§ π β π β§ βπ’ β π½ (π β π’ β βπ β π βπ β (β€β₯βπ)(π β dom πΉ β§ (πΉβπ) β π’)))) |
7 | 6 | simp3d 1145 |
. . 3
β’ (π β βπ’ β π½ (π β π’ β βπ β π βπ β (β€β₯βπ)(π β dom πΉ β§ (πΉβπ) β π’))) |
8 | 3 | r19.2uz 15298 |
. . . . . 6
β’
(βπ β
π βπ β
(β€β₯βπ)(π β dom πΉ β§ (πΉβπ) β π’) β βπ β π (π β dom πΉ β§ (πΉβπ) β π’)) |
9 | | lmcls.7 |
. . . . . . . . 9
β’ ((π β§ π β π) β (πΉβπ) β π) |
10 | | inelcm 4465 |
. . . . . . . . . 10
β’ (((πΉβπ) β π’ β§ (πΉβπ) β π) β (π’ β© π) β β
) |
11 | 10 | a1i 11 |
. . . . . . . . 9
β’ ((π β§ π β π) β (((πΉβπ) β π’ β§ (πΉβπ) β π) β (π’ β© π) β β
)) |
12 | 9, 11 | mpan2d 693 |
. . . . . . . 8
β’ ((π β§ π β π) β ((πΉβπ) β π’ β (π’ β© π) β β
)) |
13 | 12 | adantld 492 |
. . . . . . 7
β’ ((π β§ π β π) β ((π β dom πΉ β§ (πΉβπ) β π’) β (π’ β© π) β β
)) |
14 | 13 | rexlimdva 3156 |
. . . . . 6
β’ (π β (βπ β π (π β dom πΉ β§ (πΉβπ) β π’) β (π’ β© π) β β
)) |
15 | 8, 14 | syl5 34 |
. . . . 5
β’ (π β (βπ β π βπ β (β€β₯βπ)(π β dom πΉ β§ (πΉβπ) β π’) β (π’ β© π) β β
)) |
16 | 15 | imim2d 57 |
. . . 4
β’ (π β ((π β π’ β βπ β π βπ β (β€β₯βπ)(π β dom πΉ β§ (πΉβπ) β π’)) β (π β π’ β (π’ β© π) β β
))) |
17 | 16 | ralimdv 3170 |
. . 3
β’ (π β (βπ’ β π½ (π β π’ β βπ β π βπ β (β€β₯βπ)(π β dom πΉ β§ (πΉβπ) β π’)) β βπ’ β π½ (π β π’ β (π’ β© π) β β
))) |
18 | 7, 17 | mpd 15 |
. 2
β’ (π β βπ’ β π½ (π β π’ β (π’ β© π) β β
)) |
19 | | topontop 22415 |
. . . 4
β’ (π½ β (TopOnβπ) β π½ β Top) |
20 | 2, 19 | syl 17 |
. . 3
β’ (π β π½ β Top) |
21 | | lmcls.8 |
. . . 4
β’ (π β π β π) |
22 | | toponuni 22416 |
. . . . 5
β’ (π½ β (TopOnβπ) β π = βͺ π½) |
23 | 2, 22 | syl 17 |
. . . 4
β’ (π β π = βͺ π½) |
24 | 21, 23 | sseqtrd 4023 |
. . 3
β’ (π β π β βͺ π½) |
25 | | lmcl 22801 |
. . . . 5
β’ ((π½ β (TopOnβπ) β§ πΉ(βπ‘βπ½)π) β π β π) |
26 | 2, 1, 25 | syl2anc 585 |
. . . 4
β’ (π β π β π) |
27 | 26, 23 | eleqtrd 2836 |
. . 3
β’ (π β π β βͺ π½) |
28 | | eqid 2733 |
. . . 4
β’ βͺ π½ =
βͺ π½ |
29 | 28 | elcls 22577 |
. . 3
β’ ((π½ β Top β§ π β βͺ π½
β§ π β βͺ π½)
β (π β
((clsβπ½)βπ) β βπ’ β π½ (π β π’ β (π’ β© π) β β
))) |
30 | 20, 24, 27, 29 | syl3anc 1372 |
. 2
β’ (π β (π β ((clsβπ½)βπ) β βπ’ β π½ (π β π’ β (π’ β© π) β β
))) |
31 | 18, 30 | mpbird 257 |
1
β’ (π β π β ((clsβπ½)βπ)) |