MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmcls Structured version   Visualization version   GIF version

Theorem lmcls 23189
Description: Any convergent sequence of points in a subset of a topological space converges to a point in the closure of the subset. (Contributed by Mario Carneiro, 30-Dec-2013.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmff.1 𝑍 = (ℤ𝑀)
lmff.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
lmff.4 (𝜑𝑀 ∈ ℤ)
lmcls.5 (𝜑𝐹(⇝𝑡𝐽)𝑃)
lmcls.7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ 𝑆)
lmcls.8 (𝜑𝑆𝑋)
Assertion
Ref Expression
lmcls (𝜑𝑃 ∈ ((cls‘𝐽)‘𝑆))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐽   𝑘,𝑀   𝑃,𝑘   𝑆,𝑘   𝜑,𝑘   𝑘,𝑋   𝑘,𝑍

Proof of Theorem lmcls
Dummy variables 𝑗 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmcls.5 . . . . 5 (𝜑𝐹(⇝𝑡𝐽)𝑃)
2 lmff.3 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 lmff.1 . . . . . 6 𝑍 = (ℤ𝑀)
4 lmff.4 . . . . . 6 (𝜑𝑀 ∈ ℤ)
52, 3, 4lmbr2 23146 . . . . 5 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
61, 5mpbid 232 . . . 4 (𝜑 → (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
76simp3d 1144 . . 3 (𝜑 → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
83r19.2uz 15318 . . . . . 6 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) → ∃𝑘𝑍 (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
9 lmcls.7 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ 𝑆)
10 inelcm 4428 . . . . . . . . . 10 (((𝐹𝑘) ∈ 𝑢 ∧ (𝐹𝑘) ∈ 𝑆) → (𝑢𝑆) ≠ ∅)
1110a1i 11 . . . . . . . . 9 ((𝜑𝑘𝑍) → (((𝐹𝑘) ∈ 𝑢 ∧ (𝐹𝑘) ∈ 𝑆) → (𝑢𝑆) ≠ ∅))
129, 11mpan2d 694 . . . . . . . 8 ((𝜑𝑘𝑍) → ((𝐹𝑘) ∈ 𝑢 → (𝑢𝑆) ≠ ∅))
1312adantld 490 . . . . . . 7 ((𝜑𝑘𝑍) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) → (𝑢𝑆) ≠ ∅))
1413rexlimdva 3134 . . . . . 6 (𝜑 → (∃𝑘𝑍 (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) → (𝑢𝑆) ≠ ∅))
158, 14syl5 34 . . . . 5 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) → (𝑢𝑆) ≠ ∅))
1615imim2d 57 . . . 4 (𝜑 → ((𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) → (𝑃𝑢 → (𝑢𝑆) ≠ ∅)))
1716ralimdv 3147 . . 3 (𝜑 → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) → ∀𝑢𝐽 (𝑃𝑢 → (𝑢𝑆) ≠ ∅)))
187, 17mpd 15 . 2 (𝜑 → ∀𝑢𝐽 (𝑃𝑢 → (𝑢𝑆) ≠ ∅))
19 topontop 22800 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
202, 19syl 17 . . 3 (𝜑𝐽 ∈ Top)
21 lmcls.8 . . . 4 (𝜑𝑆𝑋)
22 toponuni 22801 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
232, 22syl 17 . . . 4 (𝜑𝑋 = 𝐽)
2421, 23sseqtrd 3983 . . 3 (𝜑𝑆 𝐽)
25 lmcl 23184 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡𝐽)𝑃) → 𝑃𝑋)
262, 1, 25syl2anc 584 . . . 4 (𝜑𝑃𝑋)
2726, 23eleqtrd 2830 . . 3 (𝜑𝑃 𝐽)
28 eqid 2729 . . . 4 𝐽 = 𝐽
2928elcls 22960 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽𝑃 𝐽) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑢𝐽 (𝑃𝑢 → (𝑢𝑆) ≠ ∅)))
3020, 24, 27, 29syl3anc 1373 . 2 (𝜑 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑢𝐽 (𝑃𝑢 → (𝑢𝑆) ≠ ∅)))
3118, 30mpbird 257 1 (𝜑𝑃 ∈ ((cls‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cin 3913  wss 3914  c0 4296   cuni 4871   class class class wbr 5107  dom cdm 5638  cfv 6511  (class class class)co 7387  pm cpm 8800  cc 11066  cz 12529  cuz 12793  Topctop 22780  TopOnctopon 22797  clsccl 22905  𝑡clm 23113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-er 8671  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-neg 11408  df-z 12530  df-uz 12794  df-top 22781  df-topon 22798  df-cld 22906  df-ntr 22907  df-cls 22908  df-lm 23116
This theorem is referenced by:  lmcld  23190  1stcelcls  23348  caublcls  25209
  Copyright terms: Public domain W3C validator