Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmcls | Structured version Visualization version GIF version |
Description: Any convergent sequence of points in a subset of a topological space converges to a point in the closure of the subset. (Contributed by Mario Carneiro, 30-Dec-2013.) (Revised by Mario Carneiro, 1-May-2014.) |
Ref | Expression |
---|---|
lmff.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
lmff.3 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
lmff.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
lmcls.5 | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) |
lmcls.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ 𝑆) |
lmcls.8 | ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
Ref | Expression |
---|---|
lmcls | ⊢ (𝜑 → 𝑃 ∈ ((cls‘𝐽)‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmcls.5 | . . . . 5 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | |
2 | lmff.3 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
3 | lmff.1 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | lmff.4 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
5 | 2, 3, 4 | lmbr2 22410 | . . . . 5 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) |
6 | 1, 5 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)))) |
7 | 6 | simp3d 1143 | . . 3 ⊢ (𝜑 → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) |
8 | 3 | r19.2uz 15063 | . . . . . 6 ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) → ∃𝑘 ∈ 𝑍 (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)) |
9 | lmcls.7 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ 𝑆) | |
10 | inelcm 4398 | . . . . . . . . . 10 ⊢ (((𝐹‘𝑘) ∈ 𝑢 ∧ (𝐹‘𝑘) ∈ 𝑆) → (𝑢 ∩ 𝑆) ≠ ∅) | |
11 | 10 | a1i 11 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((𝐹‘𝑘) ∈ 𝑢 ∧ (𝐹‘𝑘) ∈ 𝑆) → (𝑢 ∩ 𝑆) ≠ ∅)) |
12 | 9, 11 | mpan2d 691 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) ∈ 𝑢 → (𝑢 ∩ 𝑆) ≠ ∅)) |
13 | 12 | adantld 491 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) → (𝑢 ∩ 𝑆) ≠ ∅)) |
14 | 13 | rexlimdva 3213 | . . . . . 6 ⊢ (𝜑 → (∃𝑘 ∈ 𝑍 (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) → (𝑢 ∩ 𝑆) ≠ ∅)) |
15 | 8, 14 | syl5 34 | . . . . 5 ⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) → (𝑢 ∩ 𝑆) ≠ ∅)) |
16 | 15 | imim2d 57 | . . . 4 ⊢ (𝜑 → ((𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)) → (𝑃 ∈ 𝑢 → (𝑢 ∩ 𝑆) ≠ ∅))) |
17 | 16 | ralimdv 3109 | . . 3 ⊢ (𝜑 → (∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)) → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → (𝑢 ∩ 𝑆) ≠ ∅))) |
18 | 7, 17 | mpd 15 | . 2 ⊢ (𝜑 → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → (𝑢 ∩ 𝑆) ≠ ∅)) |
19 | topontop 22062 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
20 | 2, 19 | syl 17 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) |
21 | lmcls.8 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) | |
22 | toponuni 22063 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
23 | 2, 22 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
24 | 21, 23 | sseqtrd 3961 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) |
25 | lmcl 22448 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝑃 ∈ 𝑋) | |
26 | 2, 1, 25 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ 𝑋) |
27 | 26, 23 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → 𝑃 ∈ ∪ 𝐽) |
28 | eqid 2738 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
29 | 28 | elcls 22224 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ∧ 𝑃 ∈ ∪ 𝐽) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → (𝑢 ∩ 𝑆) ≠ ∅))) |
30 | 20, 24, 27, 29 | syl3anc 1370 | . 2 ⊢ (𝜑 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → (𝑢 ∩ 𝑆) ≠ ∅))) |
31 | 18, 30 | mpbird 256 | 1 ⊢ (𝜑 → 𝑃 ∈ ((cls‘𝐽)‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∃wrex 3065 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 ∪ cuni 4839 class class class wbr 5074 dom cdm 5589 ‘cfv 6433 (class class class)co 7275 ↑pm cpm 8616 ℂcc 10869 ℤcz 12319 ℤ≥cuz 12582 Topctop 22042 TopOnctopon 22059 clsccl 22169 ⇝𝑡clm 22377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-er 8498 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-neg 11208 df-z 12320 df-uz 12583 df-top 22043 df-topon 22060 df-cld 22170 df-ntr 22171 df-cls 22172 df-lm 22380 |
This theorem is referenced by: lmcld 22454 1stcelcls 22612 caublcls 24473 |
Copyright terms: Public domain | W3C validator |