![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmcls | Structured version Visualization version GIF version |
Description: Any convergent sequence of points in a subset of a topological space converges to a point in the closure of the subset. (Contributed by Mario Carneiro, 30-Dec-2013.) (Revised by Mario Carneiro, 1-May-2014.) |
Ref | Expression |
---|---|
lmff.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
lmff.3 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
lmff.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
lmcls.5 | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) |
lmcls.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ 𝑆) |
lmcls.8 | ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
Ref | Expression |
---|---|
lmcls | ⊢ (𝜑 → 𝑃 ∈ ((cls‘𝐽)‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmcls.5 | . . . . 5 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | |
2 | lmff.3 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
3 | lmff.1 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | lmff.4 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
5 | 2, 3, 4 | lmbr2 23257 | . . . . 5 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) |
6 | 1, 5 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)))) |
7 | 6 | simp3d 1141 | . . 3 ⊢ (𝜑 → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) |
8 | 3 | r19.2uz 15358 | . . . . . 6 ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) → ∃𝑘 ∈ 𝑍 (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)) |
9 | lmcls.7 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ 𝑆) | |
10 | inelcm 4469 | . . . . . . . . . 10 ⊢ (((𝐹‘𝑘) ∈ 𝑢 ∧ (𝐹‘𝑘) ∈ 𝑆) → (𝑢 ∩ 𝑆) ≠ ∅) | |
11 | 10 | a1i 11 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((𝐹‘𝑘) ∈ 𝑢 ∧ (𝐹‘𝑘) ∈ 𝑆) → (𝑢 ∩ 𝑆) ≠ ∅)) |
12 | 9, 11 | mpan2d 692 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) ∈ 𝑢 → (𝑢 ∩ 𝑆) ≠ ∅)) |
13 | 12 | adantld 489 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) → (𝑢 ∩ 𝑆) ≠ ∅)) |
14 | 13 | rexlimdva 3145 | . . . . . 6 ⊢ (𝜑 → (∃𝑘 ∈ 𝑍 (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) → (𝑢 ∩ 𝑆) ≠ ∅)) |
15 | 8, 14 | syl5 34 | . . . . 5 ⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) → (𝑢 ∩ 𝑆) ≠ ∅)) |
16 | 15 | imim2d 57 | . . . 4 ⊢ (𝜑 → ((𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)) → (𝑃 ∈ 𝑢 → (𝑢 ∩ 𝑆) ≠ ∅))) |
17 | 16 | ralimdv 3159 | . . 3 ⊢ (𝜑 → (∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)) → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → (𝑢 ∩ 𝑆) ≠ ∅))) |
18 | 7, 17 | mpd 15 | . 2 ⊢ (𝜑 → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → (𝑢 ∩ 𝑆) ≠ ∅)) |
19 | topontop 22909 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
20 | 2, 19 | syl 17 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) |
21 | lmcls.8 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) | |
22 | toponuni 22910 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
23 | 2, 22 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
24 | 21, 23 | sseqtrd 4020 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) |
25 | lmcl 23295 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝑃 ∈ 𝑋) | |
26 | 2, 1, 25 | syl2anc 582 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ 𝑋) |
27 | 26, 23 | eleqtrd 2828 | . . 3 ⊢ (𝜑 → 𝑃 ∈ ∪ 𝐽) |
28 | eqid 2726 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
29 | 28 | elcls 23071 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ∧ 𝑃 ∈ ∪ 𝐽) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → (𝑢 ∩ 𝑆) ≠ ∅))) |
30 | 20, 24, 27, 29 | syl3anc 1368 | . 2 ⊢ (𝜑 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → (𝑢 ∩ 𝑆) ≠ ∅))) |
31 | 18, 30 | mpbird 256 | 1 ⊢ (𝜑 → 𝑃 ∈ ((cls‘𝐽)‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∀wral 3051 ∃wrex 3060 ∩ cin 3946 ⊆ wss 3947 ∅c0 4325 ∪ cuni 4915 class class class wbr 5155 dom cdm 5684 ‘cfv 6556 (class class class)co 7426 ↑pm cpm 8858 ℂcc 11158 ℤcz 12612 ℤ≥cuz 12876 Topctop 22889 TopOnctopon 22906 clsccl 23016 ⇝𝑡clm 23224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5292 ax-sep 5306 ax-nul 5313 ax-pow 5371 ax-pr 5435 ax-un 7748 ax-cnex 11216 ax-resscn 11217 ax-pre-lttri 11234 ax-pre-lttrn 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4916 df-int 4957 df-iun 5005 df-iin 5006 df-br 5156 df-opab 5218 df-mpt 5239 df-id 5582 df-po 5596 df-so 5597 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-ov 7429 df-oprab 7430 df-mpo 7431 df-1st 8005 df-2nd 8006 df-er 8736 df-pm 8860 df-en 8977 df-dom 8978 df-sdom 8979 df-pnf 11302 df-mnf 11303 df-xr 11304 df-ltxr 11305 df-le 11306 df-neg 11499 df-z 12613 df-uz 12877 df-top 22890 df-topon 22907 df-cld 23017 df-ntr 23018 df-cls 23019 df-lm 23227 |
This theorem is referenced by: lmcld 23301 1stcelcls 23459 caublcls 25331 |
Copyright terms: Public domain | W3C validator |