MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmcls Structured version   Visualization version   GIF version

Theorem lmcls 21916
Description: Any convergent sequence of points in a subset of a topological space converges to a point in the closure of the subset. (Contributed by Mario Carneiro, 30-Dec-2013.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmff.1 𝑍 = (ℤ𝑀)
lmff.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
lmff.4 (𝜑𝑀 ∈ ℤ)
lmcls.5 (𝜑𝐹(⇝𝑡𝐽)𝑃)
lmcls.7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ 𝑆)
lmcls.8 (𝜑𝑆𝑋)
Assertion
Ref Expression
lmcls (𝜑𝑃 ∈ ((cls‘𝐽)‘𝑆))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐽   𝑘,𝑀   𝑃,𝑘   𝑆,𝑘   𝜑,𝑘   𝑘,𝑋   𝑘,𝑍

Proof of Theorem lmcls
Dummy variables 𝑗 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmcls.5 . . . . 5 (𝜑𝐹(⇝𝑡𝐽)𝑃)
2 lmff.3 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 lmff.1 . . . . . 6 𝑍 = (ℤ𝑀)
4 lmff.4 . . . . . 6 (𝜑𝑀 ∈ ℤ)
52, 3, 4lmbr2 21873 . . . . 5 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
61, 5mpbid 235 . . . 4 (𝜑 → (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
76simp3d 1141 . . 3 (𝜑 → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
83r19.2uz 14713 . . . . . 6 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) → ∃𝑘𝑍 (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
9 lmcls.7 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ 𝑆)
10 inelcm 4397 . . . . . . . . . 10 (((𝐹𝑘) ∈ 𝑢 ∧ (𝐹𝑘) ∈ 𝑆) → (𝑢𝑆) ≠ ∅)
1110a1i 11 . . . . . . . . 9 ((𝜑𝑘𝑍) → (((𝐹𝑘) ∈ 𝑢 ∧ (𝐹𝑘) ∈ 𝑆) → (𝑢𝑆) ≠ ∅))
129, 11mpan2d 693 . . . . . . . 8 ((𝜑𝑘𝑍) → ((𝐹𝑘) ∈ 𝑢 → (𝑢𝑆) ≠ ∅))
1312adantld 494 . . . . . . 7 ((𝜑𝑘𝑍) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) → (𝑢𝑆) ≠ ∅))
1413rexlimdva 3276 . . . . . 6 (𝜑 → (∃𝑘𝑍 (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) → (𝑢𝑆) ≠ ∅))
158, 14syl5 34 . . . . 5 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) → (𝑢𝑆) ≠ ∅))
1615imim2d 57 . . . 4 (𝜑 → ((𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) → (𝑃𝑢 → (𝑢𝑆) ≠ ∅)))
1716ralimdv 3173 . . 3 (𝜑 → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) → ∀𝑢𝐽 (𝑃𝑢 → (𝑢𝑆) ≠ ∅)))
187, 17mpd 15 . 2 (𝜑 → ∀𝑢𝐽 (𝑃𝑢 → (𝑢𝑆) ≠ ∅))
19 topontop 21527 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
202, 19syl 17 . . 3 (𝜑𝐽 ∈ Top)
21 lmcls.8 . . . 4 (𝜑𝑆𝑋)
22 toponuni 21528 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
232, 22syl 17 . . . 4 (𝜑𝑋 = 𝐽)
2421, 23sseqtrd 3993 . . 3 (𝜑𝑆 𝐽)
25 lmcl 21911 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡𝐽)𝑃) → 𝑃𝑋)
262, 1, 25syl2anc 587 . . . 4 (𝜑𝑃𝑋)
2726, 23eleqtrd 2918 . . 3 (𝜑𝑃 𝐽)
28 eqid 2824 . . . 4 𝐽 = 𝐽
2928elcls 21687 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽𝑃 𝐽) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑢𝐽 (𝑃𝑢 → (𝑢𝑆) ≠ ∅)))
3020, 24, 27, 29syl3anc 1368 . 2 (𝜑 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑢𝐽 (𝑃𝑢 → (𝑢𝑆) ≠ ∅)))
3118, 30mpbird 260 1 (𝜑𝑃 ∈ ((cls‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3014  wral 3133  wrex 3134  cin 3918  wss 3919  c0 4276   cuni 4824   class class class wbr 5053  dom cdm 5543  cfv 6345  (class class class)co 7151  pm cpm 8405  cc 10535  cz 11980  cuz 12242  Topctop 21507  TopOnctopon 21524  clsccl 21632  𝑡clm 21840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-cnex 10593  ax-resscn 10594  ax-pre-lttri 10611  ax-pre-lttrn 10612
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-po 5462  df-so 5463  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-ov 7154  df-oprab 7155  df-mpo 7156  df-1st 7686  df-2nd 7687  df-er 8287  df-pm 8407  df-en 8508  df-dom 8509  df-sdom 8510  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-neg 10873  df-z 11981  df-uz 12243  df-top 21508  df-topon 21525  df-cld 21633  df-ntr 21634  df-cls 21635  df-lm 21843
This theorem is referenced by:  lmcld  21917  1stcelcls  22075  caublcls  23922
  Copyright terms: Public domain W3C validator