| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmcls | Structured version Visualization version GIF version | ||
| Description: Any convergent sequence of points in a subset of a topological space converges to a point in the closure of the subset. (Contributed by Mario Carneiro, 30-Dec-2013.) (Revised by Mario Carneiro, 1-May-2014.) |
| Ref | Expression |
|---|---|
| lmff.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| lmff.3 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| lmff.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| lmcls.5 | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) |
| lmcls.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ 𝑆) |
| lmcls.8 | ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
| Ref | Expression |
|---|---|
| lmcls | ⊢ (𝜑 → 𝑃 ∈ ((cls‘𝐽)‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmcls.5 | . . . . 5 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | |
| 2 | lmff.3 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 3 | lmff.1 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 4 | lmff.4 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 5 | 2, 3, 4 | lmbr2 23175 | . . . . 5 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) |
| 6 | 1, 5 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)))) |
| 7 | 6 | simp3d 1144 | . . 3 ⊢ (𝜑 → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) |
| 8 | 3 | r19.2uz 15261 | . . . . . 6 ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) → ∃𝑘 ∈ 𝑍 (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)) |
| 9 | lmcls.7 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ 𝑆) | |
| 10 | inelcm 4414 | . . . . . . . . . 10 ⊢ (((𝐹‘𝑘) ∈ 𝑢 ∧ (𝐹‘𝑘) ∈ 𝑆) → (𝑢 ∩ 𝑆) ≠ ∅) | |
| 11 | 10 | a1i 11 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((𝐹‘𝑘) ∈ 𝑢 ∧ (𝐹‘𝑘) ∈ 𝑆) → (𝑢 ∩ 𝑆) ≠ ∅)) |
| 12 | 9, 11 | mpan2d 694 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) ∈ 𝑢 → (𝑢 ∩ 𝑆) ≠ ∅)) |
| 13 | 12 | adantld 490 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) → (𝑢 ∩ 𝑆) ≠ ∅)) |
| 14 | 13 | rexlimdva 3134 | . . . . . 6 ⊢ (𝜑 → (∃𝑘 ∈ 𝑍 (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) → (𝑢 ∩ 𝑆) ≠ ∅)) |
| 15 | 8, 14 | syl5 34 | . . . . 5 ⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) → (𝑢 ∩ 𝑆) ≠ ∅)) |
| 16 | 15 | imim2d 57 | . . . 4 ⊢ (𝜑 → ((𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)) → (𝑃 ∈ 𝑢 → (𝑢 ∩ 𝑆) ≠ ∅))) |
| 17 | 16 | ralimdv 3147 | . . 3 ⊢ (𝜑 → (∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)) → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → (𝑢 ∩ 𝑆) ≠ ∅))) |
| 18 | 7, 17 | mpd 15 | . 2 ⊢ (𝜑 → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → (𝑢 ∩ 𝑆) ≠ ∅)) |
| 19 | topontop 22829 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
| 20 | 2, 19 | syl 17 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 21 | lmcls.8 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) | |
| 22 | toponuni 22830 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
| 23 | 2, 22 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
| 24 | 21, 23 | sseqtrd 3967 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) |
| 25 | lmcl 23213 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝑃 ∈ 𝑋) | |
| 26 | 2, 1, 25 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ 𝑋) |
| 27 | 26, 23 | eleqtrd 2835 | . . 3 ⊢ (𝜑 → 𝑃 ∈ ∪ 𝐽) |
| 28 | eqid 2733 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 29 | 28 | elcls 22989 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ∧ 𝑃 ∈ ∪ 𝐽) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → (𝑢 ∩ 𝑆) ≠ ∅))) |
| 30 | 20, 24, 27, 29 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → (𝑢 ∩ 𝑆) ≠ ∅))) |
| 31 | 18, 30 | mpbird 257 | 1 ⊢ (𝜑 → 𝑃 ∈ ((cls‘𝐽)‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 ∃wrex 3057 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 ∪ cuni 4858 class class class wbr 5093 dom cdm 5619 ‘cfv 6486 (class class class)co 7352 ↑pm cpm 8757 ℂcc 11011 ℤcz 12475 ℤ≥cuz 12738 Topctop 22809 TopOnctopon 22826 clsccl 22934 ⇝𝑡clm 23142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-pre-lttri 11087 ax-pre-lttrn 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-er 8628 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-neg 11354 df-z 12476 df-uz 12739 df-top 22810 df-topon 22827 df-cld 22935 df-ntr 22936 df-cls 22937 df-lm 23145 |
| This theorem is referenced by: lmcld 23219 1stcelcls 23377 caublcls 25237 |
| Copyright terms: Public domain | W3C validator |