Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmcls | Structured version Visualization version GIF version |
Description: Any convergent sequence of points in a subset of a topological space converges to a point in the closure of the subset. (Contributed by Mario Carneiro, 30-Dec-2013.) (Revised by Mario Carneiro, 1-May-2014.) |
Ref | Expression |
---|---|
lmff.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
lmff.3 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
lmff.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
lmcls.5 | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) |
lmcls.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ 𝑆) |
lmcls.8 | ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
Ref | Expression |
---|---|
lmcls | ⊢ (𝜑 → 𝑃 ∈ ((cls‘𝐽)‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmcls.5 | . . . . 5 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | |
2 | lmff.3 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
3 | lmff.1 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | lmff.4 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
5 | 2, 3, 4 | lmbr2 22490 | . . . . 5 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) |
6 | 1, 5 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)))) |
7 | 6 | simp3d 1143 | . . 3 ⊢ (𝜑 → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) |
8 | 3 | r19.2uz 15139 | . . . . . 6 ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) → ∃𝑘 ∈ 𝑍 (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)) |
9 | lmcls.7 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ 𝑆) | |
10 | inelcm 4408 | . . . . . . . . . 10 ⊢ (((𝐹‘𝑘) ∈ 𝑢 ∧ (𝐹‘𝑘) ∈ 𝑆) → (𝑢 ∩ 𝑆) ≠ ∅) | |
11 | 10 | a1i 11 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((𝐹‘𝑘) ∈ 𝑢 ∧ (𝐹‘𝑘) ∈ 𝑆) → (𝑢 ∩ 𝑆) ≠ ∅)) |
12 | 9, 11 | mpan2d 691 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) ∈ 𝑢 → (𝑢 ∩ 𝑆) ≠ ∅)) |
13 | 12 | adantld 491 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) → (𝑢 ∩ 𝑆) ≠ ∅)) |
14 | 13 | rexlimdva 3148 | . . . . . 6 ⊢ (𝜑 → (∃𝑘 ∈ 𝑍 (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) → (𝑢 ∩ 𝑆) ≠ ∅)) |
15 | 8, 14 | syl5 34 | . . . . 5 ⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) → (𝑢 ∩ 𝑆) ≠ ∅)) |
16 | 15 | imim2d 57 | . . . 4 ⊢ (𝜑 → ((𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)) → (𝑃 ∈ 𝑢 → (𝑢 ∩ 𝑆) ≠ ∅))) |
17 | 16 | ralimdv 3162 | . . 3 ⊢ (𝜑 → (∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)) → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → (𝑢 ∩ 𝑆) ≠ ∅))) |
18 | 7, 17 | mpd 15 | . 2 ⊢ (𝜑 → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → (𝑢 ∩ 𝑆) ≠ ∅)) |
19 | topontop 22142 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
20 | 2, 19 | syl 17 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) |
21 | lmcls.8 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) | |
22 | toponuni 22143 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
23 | 2, 22 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
24 | 21, 23 | sseqtrd 3970 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) |
25 | lmcl 22528 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝑃 ∈ 𝑋) | |
26 | 2, 1, 25 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ 𝑋) |
27 | 26, 23 | eleqtrd 2839 | . . 3 ⊢ (𝜑 → 𝑃 ∈ ∪ 𝐽) |
28 | eqid 2736 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
29 | 28 | elcls 22304 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ∧ 𝑃 ∈ ∪ 𝐽) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → (𝑢 ∩ 𝑆) ≠ ∅))) |
30 | 20, 24, 27, 29 | syl3anc 1370 | . 2 ⊢ (𝜑 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → (𝑢 ∩ 𝑆) ≠ ∅))) |
31 | 18, 30 | mpbird 256 | 1 ⊢ (𝜑 → 𝑃 ∈ ((cls‘𝐽)‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 ∩ cin 3895 ⊆ wss 3896 ∅c0 4266 ∪ cuni 4849 class class class wbr 5086 dom cdm 5607 ‘cfv 6465 (class class class)co 7316 ↑pm cpm 8665 ℂcc 10948 ℤcz 12398 ℤ≥cuz 12661 Topctop 22122 TopOnctopon 22139 clsccl 22249 ⇝𝑡clm 22457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-pre-lttri 11024 ax-pre-lttrn 11025 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-int 4892 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5170 df-id 5506 df-po 5520 df-so 5521 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-ov 7319 df-oprab 7320 df-mpo 7321 df-1st 7877 df-2nd 7878 df-er 8547 df-pm 8667 df-en 8783 df-dom 8784 df-sdom 8785 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-neg 11287 df-z 12399 df-uz 12662 df-top 22123 df-topon 22140 df-cld 22250 df-ntr 22251 df-cls 22252 df-lm 22460 |
This theorem is referenced by: lmcld 22534 1stcelcls 22692 caublcls 24553 |
Copyright terms: Public domain | W3C validator |