MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cat1lem Structured version   Visualization version   GIF version

Theorem cat1lem 17480
Description: The category of sets in a "universe" containing the empty set and another set does not have pairwise disjoint hom-sets as required in Axiom CAT 1 in [Lang] p. 53. Lemma for cat1 17481. (Contributed by Zhi Wang, 15-Sep-2024.)
Hypotheses
Ref Expression
cat1lem.1 𝐶 = (SetCat‘𝑈)
cat1lem.2 (𝜑𝑈𝑉)
cat1lem.3 𝐵 = (Base‘𝐶)
cat1lem.4 𝐻 = (Hom ‘𝐶)
cat1lem.5 (𝜑 → ∅ ∈ 𝑈)
cat1lem.6 (𝜑𝑌𝑈)
cat1lem.7 (𝜑 → ∅ ≠ 𝑌)
Assertion
Ref Expression
cat1lem (𝜑 → ∃𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝐵 (((𝑥𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)))
Distinct variable groups:   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝐻,𝑥,𝑦,𝑧   𝑤,𝑌
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐶(𝑥,𝑦,𝑧,𝑤)   𝑈(𝑥,𝑦,𝑧,𝑤)   𝑉(𝑥,𝑦,𝑧,𝑤)   𝑌(𝑥,𝑦,𝑧)

Proof of Theorem cat1lem
StepHypRef Expression
1 cat1lem.5 . . 3 (𝜑 → ∅ ∈ 𝑈)
2 cat1lem.1 . . . . 5 𝐶 = (SetCat‘𝑈)
3 cat1lem.2 . . . . 5 (𝜑𝑈𝑉)
42, 3setcbas 17462 . . . 4 (𝜑𝑈 = (Base‘𝐶))
5 cat1lem.3 . . . 4 𝐵 = (Base‘𝐶)
64, 5eqtr4di 2792 . . 3 (𝜑𝑈 = 𝐵)
71, 6eleqtrd 2836 . 2 (𝜑 → ∅ ∈ 𝐵)
8 cat1lem.6 . . . 4 (𝜑𝑌𝑈)
98, 6eleqtrd 2836 . . 3 (𝜑𝑌𝐵)
10 f0 6569 . . . . 5 ∅:∅⟶∅
11 cat1lem.4 . . . . . 6 𝐻 = (Hom ‘𝐶)
122, 3, 11, 1, 1elsetchom 17465 . . . . 5 (𝜑 → (∅ ∈ (∅𝐻∅) ↔ ∅:∅⟶∅))
1310, 12mpbiri 261 . . . 4 (𝜑 → ∅ ∈ (∅𝐻∅))
14 f0 6569 . . . . 5 ∅:∅⟶𝑌
152, 3, 11, 1, 8elsetchom 17465 . . . . 5 (𝜑 → (∅ ∈ (∅𝐻𝑌) ↔ ∅:∅⟶𝑌))
1614, 15mpbiri 261 . . . 4 (𝜑 → ∅ ∈ (∅𝐻𝑌))
17 inelcm 4364 . . . 4 ((∅ ∈ (∅𝐻∅) ∧ ∅ ∈ (∅𝐻𝑌)) → ((∅𝐻∅) ∩ (∅𝐻𝑌)) ≠ ∅)
1813, 16, 17syl2anc 587 . . 3 (𝜑 → ((∅𝐻∅) ∩ (∅𝐻𝑌)) ≠ ∅)
19 cat1lem.7 . . . . 5 (𝜑 → ∅ ≠ 𝑌)
2019neneqd 2940 . . . 4 (𝜑 → ¬ ∅ = 𝑌)
2120intnand 492 . . 3 (𝜑 → ¬ (∅ = ∅ ∧ ∅ = 𝑌))
22 oveq1 7189 . . . . . . 7 (𝑧 = ∅ → (𝑧𝐻𝑤) = (∅𝐻𝑤))
2322ineq2d 4113 . . . . . 6 (𝑧 = ∅ → ((∅𝐻∅) ∩ (𝑧𝐻𝑤)) = ((∅𝐻∅) ∩ (∅𝐻𝑤)))
2423neeq1d 2994 . . . . 5 (𝑧 = ∅ → (((∅𝐻∅) ∩ (𝑧𝐻𝑤)) ≠ ∅ ↔ ((∅𝐻∅) ∩ (∅𝐻𝑤)) ≠ ∅))
25 eqeq2 2751 . . . . . . 7 (𝑧 = ∅ → (∅ = 𝑧 ↔ ∅ = ∅))
2625anbi1d 633 . . . . . 6 (𝑧 = ∅ → ((∅ = 𝑧 ∧ ∅ = 𝑤) ↔ (∅ = ∅ ∧ ∅ = 𝑤)))
2726notbid 321 . . . . 5 (𝑧 = ∅ → (¬ (∅ = 𝑧 ∧ ∅ = 𝑤) ↔ ¬ (∅ = ∅ ∧ ∅ = 𝑤)))
2824, 27anbi12d 634 . . . 4 (𝑧 = ∅ → ((((∅𝐻∅) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = 𝑧 ∧ ∅ = 𝑤)) ↔ (((∅𝐻∅) ∩ (∅𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = ∅ ∧ ∅ = 𝑤))))
29 oveq2 7190 . . . . . . 7 (𝑤 = 𝑌 → (∅𝐻𝑤) = (∅𝐻𝑌))
3029ineq2d 4113 . . . . . 6 (𝑤 = 𝑌 → ((∅𝐻∅) ∩ (∅𝐻𝑤)) = ((∅𝐻∅) ∩ (∅𝐻𝑌)))
3130neeq1d 2994 . . . . 5 (𝑤 = 𝑌 → (((∅𝐻∅) ∩ (∅𝐻𝑤)) ≠ ∅ ↔ ((∅𝐻∅) ∩ (∅𝐻𝑌)) ≠ ∅))
32 eqeq2 2751 . . . . . . 7 (𝑤 = 𝑌 → (∅ = 𝑤 ↔ ∅ = 𝑌))
3332anbi2d 632 . . . . . 6 (𝑤 = 𝑌 → ((∅ = ∅ ∧ ∅ = 𝑤) ↔ (∅ = ∅ ∧ ∅ = 𝑌)))
3433notbid 321 . . . . 5 (𝑤 = 𝑌 → (¬ (∅ = ∅ ∧ ∅ = 𝑤) ↔ ¬ (∅ = ∅ ∧ ∅ = 𝑌)))
3531, 34anbi12d 634 . . . 4 (𝑤 = 𝑌 → ((((∅𝐻∅) ∩ (∅𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = ∅ ∧ ∅ = 𝑤)) ↔ (((∅𝐻∅) ∩ (∅𝐻𝑌)) ≠ ∅ ∧ ¬ (∅ = ∅ ∧ ∅ = 𝑌))))
3628, 35rspc2ev 3541 . . 3 ((∅ ∈ 𝐵𝑌𝐵 ∧ (((∅𝐻∅) ∩ (∅𝐻𝑌)) ≠ ∅ ∧ ¬ (∅ = ∅ ∧ ∅ = 𝑌))) → ∃𝑧𝐵𝑤𝐵 (((∅𝐻∅) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = 𝑧 ∧ ∅ = 𝑤)))
377, 9, 18, 21, 36syl112anc 1375 . 2 (𝜑 → ∃𝑧𝐵𝑤𝐵 (((∅𝐻∅) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = 𝑧 ∧ ∅ = 𝑤)))
38 oveq1 7189 . . . . . . 7 (𝑥 = ∅ → (𝑥𝐻𝑦) = (∅𝐻𝑦))
3938ineq1d 4112 . . . . . 6 (𝑥 = ∅ → ((𝑥𝐻𝑦) ∩ (𝑧𝐻𝑤)) = ((∅𝐻𝑦) ∩ (𝑧𝐻𝑤)))
4039neeq1d 2994 . . . . 5 (𝑥 = ∅ → (((𝑥𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅ ↔ ((∅𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅))
41 eqeq1 2743 . . . . . . 7 (𝑥 = ∅ → (𝑥 = 𝑧 ↔ ∅ = 𝑧))
4241anbi1d 633 . . . . . 6 (𝑥 = ∅ → ((𝑥 = 𝑧𝑦 = 𝑤) ↔ (∅ = 𝑧𝑦 = 𝑤)))
4342notbid 321 . . . . 5 (𝑥 = ∅ → (¬ (𝑥 = 𝑧𝑦 = 𝑤) ↔ ¬ (∅ = 𝑧𝑦 = 𝑤)))
4440, 43anbi12d 634 . . . 4 (𝑥 = ∅ → ((((𝑥𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ (((∅𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = 𝑧𝑦 = 𝑤))))
45442rexbidv 3211 . . 3 (𝑥 = ∅ → (∃𝑧𝐵𝑤𝐵 (((𝑥𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑧𝐵𝑤𝐵 (((∅𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = 𝑧𝑦 = 𝑤))))
46 oveq2 7190 . . . . . . 7 (𝑦 = ∅ → (∅𝐻𝑦) = (∅𝐻∅))
4746ineq1d 4112 . . . . . 6 (𝑦 = ∅ → ((∅𝐻𝑦) ∩ (𝑧𝐻𝑤)) = ((∅𝐻∅) ∩ (𝑧𝐻𝑤)))
4847neeq1d 2994 . . . . 5 (𝑦 = ∅ → (((∅𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅ ↔ ((∅𝐻∅) ∩ (𝑧𝐻𝑤)) ≠ ∅))
49 eqeq1 2743 . . . . . . 7 (𝑦 = ∅ → (𝑦 = 𝑤 ↔ ∅ = 𝑤))
5049anbi2d 632 . . . . . 6 (𝑦 = ∅ → ((∅ = 𝑧𝑦 = 𝑤) ↔ (∅ = 𝑧 ∧ ∅ = 𝑤)))
5150notbid 321 . . . . 5 (𝑦 = ∅ → (¬ (∅ = 𝑧𝑦 = 𝑤) ↔ ¬ (∅ = 𝑧 ∧ ∅ = 𝑤)))
5248, 51anbi12d 634 . . . 4 (𝑦 = ∅ → ((((∅𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = 𝑧𝑦 = 𝑤)) ↔ (((∅𝐻∅) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = 𝑧 ∧ ∅ = 𝑤))))
53522rexbidv 3211 . . 3 (𝑦 = ∅ → (∃𝑧𝐵𝑤𝐵 (((∅𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = 𝑧𝑦 = 𝑤)) ↔ ∃𝑧𝐵𝑤𝐵 (((∅𝐻∅) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = 𝑧 ∧ ∅ = 𝑤))))
5445, 53rspc2ev 3541 . 2 ((∅ ∈ 𝐵 ∧ ∅ ∈ 𝐵 ∧ ∃𝑧𝐵𝑤𝐵 (((∅𝐻∅) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = 𝑧 ∧ ∅ = 𝑤))) → ∃𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝐵 (((𝑥𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)))
557, 7, 37, 54syl3anc 1372 1 (𝜑 → ∃𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝐵 (((𝑥𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1542  wcel 2114  wne 2935  wrex 3055  cin 3852  c0 4221  wf 6345  cfv 6349  (class class class)co 7182  Basecbs 16598  Hom chom 16691  SetCatcsetc 17459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491  ax-cnex 10683  ax-resscn 10684  ax-1cn 10685  ax-icn 10686  ax-addcl 10687  ax-addrcl 10688  ax-mulcl 10689  ax-mulrcl 10690  ax-mulcom 10691  ax-addass 10692  ax-mulass 10693  ax-distr 10694  ax-i2m1 10695  ax-1ne0 10696  ax-1rid 10697  ax-rnegex 10698  ax-rrecex 10699  ax-cnre 10700  ax-pre-lttri 10701  ax-pre-lttrn 10702  ax-pre-ltadd 10703  ax-pre-mulgt0 10704
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6185  df-on 6186  df-lim 6187  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7139  df-ov 7185  df-oprab 7186  df-mpo 7187  df-om 7612  df-1st 7726  df-2nd 7727  df-wrecs 7988  df-recs 8049  df-rdg 8087  df-1o 8143  df-er 8332  df-map 8451  df-en 8568  df-dom 8569  df-sdom 8570  df-fin 8571  df-pnf 10767  df-mnf 10768  df-xr 10769  df-ltxr 10770  df-le 10771  df-sub 10962  df-neg 10963  df-nn 11729  df-2 11791  df-3 11792  df-4 11793  df-5 11794  df-6 11795  df-7 11796  df-8 11797  df-9 11798  df-n0 11989  df-z 12075  df-dec 12192  df-uz 12337  df-fz 12994  df-struct 16600  df-ndx 16601  df-slot 16602  df-base 16604  df-hom 16704  df-cco 16705  df-setc 17460
This theorem is referenced by:  cat1  17481
  Copyright terms: Public domain W3C validator