MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cat1lem Structured version   Visualization version   GIF version

Theorem cat1lem 18163
Description: The category of sets in a "universe" containing the empty set and another set does not have pairwise disjoint hom-sets as required in Axiom CAT 1 in [Lang] p. 53. Lemma for cat1 18164. (Contributed by Zhi Wang, 15-Sep-2024.)
Hypotheses
Ref Expression
cat1lem.1 𝐶 = (SetCat‘𝑈)
cat1lem.2 (𝜑𝑈𝑉)
cat1lem.3 𝐵 = (Base‘𝐶)
cat1lem.4 𝐻 = (Hom ‘𝐶)
cat1lem.5 (𝜑 → ∅ ∈ 𝑈)
cat1lem.6 (𝜑𝑌𝑈)
cat1lem.7 (𝜑 → ∅ ≠ 𝑌)
Assertion
Ref Expression
cat1lem (𝜑 → ∃𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝐵 (((𝑥𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)))
Distinct variable groups:   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝐻,𝑥,𝑦,𝑧   𝑤,𝑌
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐶(𝑥,𝑦,𝑧,𝑤)   𝑈(𝑥,𝑦,𝑧,𝑤)   𝑉(𝑥,𝑦,𝑧,𝑤)   𝑌(𝑥,𝑦,𝑧)

Proof of Theorem cat1lem
StepHypRef Expression
1 cat1lem.5 . . 3 (𝜑 → ∅ ∈ 𝑈)
2 cat1lem.1 . . . . 5 𝐶 = (SetCat‘𝑈)
3 cat1lem.2 . . . . 5 (𝜑𝑈𝑉)
42, 3setcbas 18145 . . . 4 (𝜑𝑈 = (Base‘𝐶))
5 cat1lem.3 . . . 4 𝐵 = (Base‘𝐶)
64, 5eqtr4di 2798 . . 3 (𝜑𝑈 = 𝐵)
71, 6eleqtrd 2846 . 2 (𝜑 → ∅ ∈ 𝐵)
8 cat1lem.6 . . . 4 (𝜑𝑌𝑈)
98, 6eleqtrd 2846 . . 3 (𝜑𝑌𝐵)
10 f0 6802 . . . . 5 ∅:∅⟶∅
11 cat1lem.4 . . . . . 6 𝐻 = (Hom ‘𝐶)
122, 3, 11, 1, 1elsetchom 18148 . . . . 5 (𝜑 → (∅ ∈ (∅𝐻∅) ↔ ∅:∅⟶∅))
1310, 12mpbiri 258 . . . 4 (𝜑 → ∅ ∈ (∅𝐻∅))
14 f0 6802 . . . . 5 ∅:∅⟶𝑌
152, 3, 11, 1, 8elsetchom 18148 . . . . 5 (𝜑 → (∅ ∈ (∅𝐻𝑌) ↔ ∅:∅⟶𝑌))
1614, 15mpbiri 258 . . . 4 (𝜑 → ∅ ∈ (∅𝐻𝑌))
17 inelcm 4488 . . . 4 ((∅ ∈ (∅𝐻∅) ∧ ∅ ∈ (∅𝐻𝑌)) → ((∅𝐻∅) ∩ (∅𝐻𝑌)) ≠ ∅)
1813, 16, 17syl2anc 583 . . 3 (𝜑 → ((∅𝐻∅) ∩ (∅𝐻𝑌)) ≠ ∅)
19 cat1lem.7 . . . . 5 (𝜑 → ∅ ≠ 𝑌)
2019neneqd 2951 . . . 4 (𝜑 → ¬ ∅ = 𝑌)
2120intnand 488 . . 3 (𝜑 → ¬ (∅ = ∅ ∧ ∅ = 𝑌))
22 oveq1 7455 . . . . . . 7 (𝑧 = ∅ → (𝑧𝐻𝑤) = (∅𝐻𝑤))
2322ineq2d 4241 . . . . . 6 (𝑧 = ∅ → ((∅𝐻∅) ∩ (𝑧𝐻𝑤)) = ((∅𝐻∅) ∩ (∅𝐻𝑤)))
2423neeq1d 3006 . . . . 5 (𝑧 = ∅ → (((∅𝐻∅) ∩ (𝑧𝐻𝑤)) ≠ ∅ ↔ ((∅𝐻∅) ∩ (∅𝐻𝑤)) ≠ ∅))
25 eqeq2 2752 . . . . . . 7 (𝑧 = ∅ → (∅ = 𝑧 ↔ ∅ = ∅))
2625anbi1d 630 . . . . . 6 (𝑧 = ∅ → ((∅ = 𝑧 ∧ ∅ = 𝑤) ↔ (∅ = ∅ ∧ ∅ = 𝑤)))
2726notbid 318 . . . . 5 (𝑧 = ∅ → (¬ (∅ = 𝑧 ∧ ∅ = 𝑤) ↔ ¬ (∅ = ∅ ∧ ∅ = 𝑤)))
2824, 27anbi12d 631 . . . 4 (𝑧 = ∅ → ((((∅𝐻∅) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = 𝑧 ∧ ∅ = 𝑤)) ↔ (((∅𝐻∅) ∩ (∅𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = ∅ ∧ ∅ = 𝑤))))
29 oveq2 7456 . . . . . . 7 (𝑤 = 𝑌 → (∅𝐻𝑤) = (∅𝐻𝑌))
3029ineq2d 4241 . . . . . 6 (𝑤 = 𝑌 → ((∅𝐻∅) ∩ (∅𝐻𝑤)) = ((∅𝐻∅) ∩ (∅𝐻𝑌)))
3130neeq1d 3006 . . . . 5 (𝑤 = 𝑌 → (((∅𝐻∅) ∩ (∅𝐻𝑤)) ≠ ∅ ↔ ((∅𝐻∅) ∩ (∅𝐻𝑌)) ≠ ∅))
32 eqeq2 2752 . . . . . . 7 (𝑤 = 𝑌 → (∅ = 𝑤 ↔ ∅ = 𝑌))
3332anbi2d 629 . . . . . 6 (𝑤 = 𝑌 → ((∅ = ∅ ∧ ∅ = 𝑤) ↔ (∅ = ∅ ∧ ∅ = 𝑌)))
3433notbid 318 . . . . 5 (𝑤 = 𝑌 → (¬ (∅ = ∅ ∧ ∅ = 𝑤) ↔ ¬ (∅ = ∅ ∧ ∅ = 𝑌)))
3531, 34anbi12d 631 . . . 4 (𝑤 = 𝑌 → ((((∅𝐻∅) ∩ (∅𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = ∅ ∧ ∅ = 𝑤)) ↔ (((∅𝐻∅) ∩ (∅𝐻𝑌)) ≠ ∅ ∧ ¬ (∅ = ∅ ∧ ∅ = 𝑌))))
3628, 35rspc2ev 3648 . . 3 ((∅ ∈ 𝐵𝑌𝐵 ∧ (((∅𝐻∅) ∩ (∅𝐻𝑌)) ≠ ∅ ∧ ¬ (∅ = ∅ ∧ ∅ = 𝑌))) → ∃𝑧𝐵𝑤𝐵 (((∅𝐻∅) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = 𝑧 ∧ ∅ = 𝑤)))
377, 9, 18, 21, 36syl112anc 1374 . 2 (𝜑 → ∃𝑧𝐵𝑤𝐵 (((∅𝐻∅) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = 𝑧 ∧ ∅ = 𝑤)))
38 oveq1 7455 . . . . . . 7 (𝑥 = ∅ → (𝑥𝐻𝑦) = (∅𝐻𝑦))
3938ineq1d 4240 . . . . . 6 (𝑥 = ∅ → ((𝑥𝐻𝑦) ∩ (𝑧𝐻𝑤)) = ((∅𝐻𝑦) ∩ (𝑧𝐻𝑤)))
4039neeq1d 3006 . . . . 5 (𝑥 = ∅ → (((𝑥𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅ ↔ ((∅𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅))
41 eqeq1 2744 . . . . . . 7 (𝑥 = ∅ → (𝑥 = 𝑧 ↔ ∅ = 𝑧))
4241anbi1d 630 . . . . . 6 (𝑥 = ∅ → ((𝑥 = 𝑧𝑦 = 𝑤) ↔ (∅ = 𝑧𝑦 = 𝑤)))
4342notbid 318 . . . . 5 (𝑥 = ∅ → (¬ (𝑥 = 𝑧𝑦 = 𝑤) ↔ ¬ (∅ = 𝑧𝑦 = 𝑤)))
4440, 43anbi12d 631 . . . 4 (𝑥 = ∅ → ((((𝑥𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ (((∅𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = 𝑧𝑦 = 𝑤))))
45442rexbidv 3228 . . 3 (𝑥 = ∅ → (∃𝑧𝐵𝑤𝐵 (((𝑥𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑧𝐵𝑤𝐵 (((∅𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = 𝑧𝑦 = 𝑤))))
46 oveq2 7456 . . . . . . 7 (𝑦 = ∅ → (∅𝐻𝑦) = (∅𝐻∅))
4746ineq1d 4240 . . . . . 6 (𝑦 = ∅ → ((∅𝐻𝑦) ∩ (𝑧𝐻𝑤)) = ((∅𝐻∅) ∩ (𝑧𝐻𝑤)))
4847neeq1d 3006 . . . . 5 (𝑦 = ∅ → (((∅𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅ ↔ ((∅𝐻∅) ∩ (𝑧𝐻𝑤)) ≠ ∅))
49 eqeq1 2744 . . . . . . 7 (𝑦 = ∅ → (𝑦 = 𝑤 ↔ ∅ = 𝑤))
5049anbi2d 629 . . . . . 6 (𝑦 = ∅ → ((∅ = 𝑧𝑦 = 𝑤) ↔ (∅ = 𝑧 ∧ ∅ = 𝑤)))
5150notbid 318 . . . . 5 (𝑦 = ∅ → (¬ (∅ = 𝑧𝑦 = 𝑤) ↔ ¬ (∅ = 𝑧 ∧ ∅ = 𝑤)))
5248, 51anbi12d 631 . . . 4 (𝑦 = ∅ → ((((∅𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = 𝑧𝑦 = 𝑤)) ↔ (((∅𝐻∅) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = 𝑧 ∧ ∅ = 𝑤))))
53522rexbidv 3228 . . 3 (𝑦 = ∅ → (∃𝑧𝐵𝑤𝐵 (((∅𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = 𝑧𝑦 = 𝑤)) ↔ ∃𝑧𝐵𝑤𝐵 (((∅𝐻∅) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = 𝑧 ∧ ∅ = 𝑤))))
5445, 53rspc2ev 3648 . 2 ((∅ ∈ 𝐵 ∧ ∅ ∈ 𝐵 ∧ ∃𝑧𝐵𝑤𝐵 (((∅𝐻∅) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = 𝑧 ∧ ∅ = 𝑤))) → ∃𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝐵 (((𝑥𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)))
557, 7, 37, 54syl3anc 1371 1 (𝜑 → ∃𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝐵 (((𝑥𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wrex 3076  cin 3975  c0 4352  wf 6569  cfv 6573  (class class class)co 7448  Basecbs 17258  Hom chom 17322  SetCatcsetc 18142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-hom 17335  df-cco 17336  df-setc 18143
This theorem is referenced by:  cat1  18164
  Copyright terms: Public domain W3C validator