MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cat1lem Structured version   Visualization version   GIF version

Theorem cat1lem 18003
Description: The category of sets in a "universe" containing the empty set and another set does not have pairwise disjoint hom-sets as required in Axiom CAT 1 in [Lang] p. 53. Lemma for cat1 18004. (Contributed by Zhi Wang, 15-Sep-2024.)
Hypotheses
Ref Expression
cat1lem.1 𝐶 = (SetCat‘𝑈)
cat1lem.2 (𝜑𝑈𝑉)
cat1lem.3 𝐵 = (Base‘𝐶)
cat1lem.4 𝐻 = (Hom ‘𝐶)
cat1lem.5 (𝜑 → ∅ ∈ 𝑈)
cat1lem.6 (𝜑𝑌𝑈)
cat1lem.7 (𝜑 → ∅ ≠ 𝑌)
Assertion
Ref Expression
cat1lem (𝜑 → ∃𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝐵 (((𝑥𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)))
Distinct variable groups:   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝐻,𝑥,𝑦,𝑧   𝑤,𝑌
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐶(𝑥,𝑦,𝑧,𝑤)   𝑈(𝑥,𝑦,𝑧,𝑤)   𝑉(𝑥,𝑦,𝑧,𝑤)   𝑌(𝑥,𝑦,𝑧)

Proof of Theorem cat1lem
StepHypRef Expression
1 cat1lem.5 . . 3 (𝜑 → ∅ ∈ 𝑈)
2 cat1lem.1 . . . . 5 𝐶 = (SetCat‘𝑈)
3 cat1lem.2 . . . . 5 (𝜑𝑈𝑉)
42, 3setcbas 17985 . . . 4 (𝜑𝑈 = (Base‘𝐶))
5 cat1lem.3 . . . 4 𝐵 = (Base‘𝐶)
64, 5eqtr4di 2782 . . 3 (𝜑𝑈 = 𝐵)
71, 6eleqtrd 2830 . 2 (𝜑 → ∅ ∈ 𝐵)
8 cat1lem.6 . . . 4 (𝜑𝑌𝑈)
98, 6eleqtrd 2830 . . 3 (𝜑𝑌𝐵)
10 f0 6705 . . . . 5 ∅:∅⟶∅
11 cat1lem.4 . . . . . 6 𝐻 = (Hom ‘𝐶)
122, 3, 11, 1, 1elsetchom 17988 . . . . 5 (𝜑 → (∅ ∈ (∅𝐻∅) ↔ ∅:∅⟶∅))
1310, 12mpbiri 258 . . . 4 (𝜑 → ∅ ∈ (∅𝐻∅))
14 f0 6705 . . . . 5 ∅:∅⟶𝑌
152, 3, 11, 1, 8elsetchom 17988 . . . . 5 (𝜑 → (∅ ∈ (∅𝐻𝑌) ↔ ∅:∅⟶𝑌))
1614, 15mpbiri 258 . . . 4 (𝜑 → ∅ ∈ (∅𝐻𝑌))
17 inelcm 4416 . . . 4 ((∅ ∈ (∅𝐻∅) ∧ ∅ ∈ (∅𝐻𝑌)) → ((∅𝐻∅) ∩ (∅𝐻𝑌)) ≠ ∅)
1813, 16, 17syl2anc 584 . . 3 (𝜑 → ((∅𝐻∅) ∩ (∅𝐻𝑌)) ≠ ∅)
19 cat1lem.7 . . . . 5 (𝜑 → ∅ ≠ 𝑌)
2019neneqd 2930 . . . 4 (𝜑 → ¬ ∅ = 𝑌)
2120intnand 488 . . 3 (𝜑 → ¬ (∅ = ∅ ∧ ∅ = 𝑌))
22 oveq1 7356 . . . . . . 7 (𝑧 = ∅ → (𝑧𝐻𝑤) = (∅𝐻𝑤))
2322ineq2d 4171 . . . . . 6 (𝑧 = ∅ → ((∅𝐻∅) ∩ (𝑧𝐻𝑤)) = ((∅𝐻∅) ∩ (∅𝐻𝑤)))
2423neeq1d 2984 . . . . 5 (𝑧 = ∅ → (((∅𝐻∅) ∩ (𝑧𝐻𝑤)) ≠ ∅ ↔ ((∅𝐻∅) ∩ (∅𝐻𝑤)) ≠ ∅))
25 eqeq2 2741 . . . . . . 7 (𝑧 = ∅ → (∅ = 𝑧 ↔ ∅ = ∅))
2625anbi1d 631 . . . . . 6 (𝑧 = ∅ → ((∅ = 𝑧 ∧ ∅ = 𝑤) ↔ (∅ = ∅ ∧ ∅ = 𝑤)))
2726notbid 318 . . . . 5 (𝑧 = ∅ → (¬ (∅ = 𝑧 ∧ ∅ = 𝑤) ↔ ¬ (∅ = ∅ ∧ ∅ = 𝑤)))
2824, 27anbi12d 632 . . . 4 (𝑧 = ∅ → ((((∅𝐻∅) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = 𝑧 ∧ ∅ = 𝑤)) ↔ (((∅𝐻∅) ∩ (∅𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = ∅ ∧ ∅ = 𝑤))))
29 oveq2 7357 . . . . . . 7 (𝑤 = 𝑌 → (∅𝐻𝑤) = (∅𝐻𝑌))
3029ineq2d 4171 . . . . . 6 (𝑤 = 𝑌 → ((∅𝐻∅) ∩ (∅𝐻𝑤)) = ((∅𝐻∅) ∩ (∅𝐻𝑌)))
3130neeq1d 2984 . . . . 5 (𝑤 = 𝑌 → (((∅𝐻∅) ∩ (∅𝐻𝑤)) ≠ ∅ ↔ ((∅𝐻∅) ∩ (∅𝐻𝑌)) ≠ ∅))
32 eqeq2 2741 . . . . . . 7 (𝑤 = 𝑌 → (∅ = 𝑤 ↔ ∅ = 𝑌))
3332anbi2d 630 . . . . . 6 (𝑤 = 𝑌 → ((∅ = ∅ ∧ ∅ = 𝑤) ↔ (∅ = ∅ ∧ ∅ = 𝑌)))
3433notbid 318 . . . . 5 (𝑤 = 𝑌 → (¬ (∅ = ∅ ∧ ∅ = 𝑤) ↔ ¬ (∅ = ∅ ∧ ∅ = 𝑌)))
3531, 34anbi12d 632 . . . 4 (𝑤 = 𝑌 → ((((∅𝐻∅) ∩ (∅𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = ∅ ∧ ∅ = 𝑤)) ↔ (((∅𝐻∅) ∩ (∅𝐻𝑌)) ≠ ∅ ∧ ¬ (∅ = ∅ ∧ ∅ = 𝑌))))
3628, 35rspc2ev 3590 . . 3 ((∅ ∈ 𝐵𝑌𝐵 ∧ (((∅𝐻∅) ∩ (∅𝐻𝑌)) ≠ ∅ ∧ ¬ (∅ = ∅ ∧ ∅ = 𝑌))) → ∃𝑧𝐵𝑤𝐵 (((∅𝐻∅) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = 𝑧 ∧ ∅ = 𝑤)))
377, 9, 18, 21, 36syl112anc 1376 . 2 (𝜑 → ∃𝑧𝐵𝑤𝐵 (((∅𝐻∅) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = 𝑧 ∧ ∅ = 𝑤)))
38 oveq1 7356 . . . . . . 7 (𝑥 = ∅ → (𝑥𝐻𝑦) = (∅𝐻𝑦))
3938ineq1d 4170 . . . . . 6 (𝑥 = ∅ → ((𝑥𝐻𝑦) ∩ (𝑧𝐻𝑤)) = ((∅𝐻𝑦) ∩ (𝑧𝐻𝑤)))
4039neeq1d 2984 . . . . 5 (𝑥 = ∅ → (((𝑥𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅ ↔ ((∅𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅))
41 eqeq1 2733 . . . . . . 7 (𝑥 = ∅ → (𝑥 = 𝑧 ↔ ∅ = 𝑧))
4241anbi1d 631 . . . . . 6 (𝑥 = ∅ → ((𝑥 = 𝑧𝑦 = 𝑤) ↔ (∅ = 𝑧𝑦 = 𝑤)))
4342notbid 318 . . . . 5 (𝑥 = ∅ → (¬ (𝑥 = 𝑧𝑦 = 𝑤) ↔ ¬ (∅ = 𝑧𝑦 = 𝑤)))
4440, 43anbi12d 632 . . . 4 (𝑥 = ∅ → ((((𝑥𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ (((∅𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = 𝑧𝑦 = 𝑤))))
45442rexbidv 3194 . . 3 (𝑥 = ∅ → (∃𝑧𝐵𝑤𝐵 (((𝑥𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑧𝐵𝑤𝐵 (((∅𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = 𝑧𝑦 = 𝑤))))
46 oveq2 7357 . . . . . . 7 (𝑦 = ∅ → (∅𝐻𝑦) = (∅𝐻∅))
4746ineq1d 4170 . . . . . 6 (𝑦 = ∅ → ((∅𝐻𝑦) ∩ (𝑧𝐻𝑤)) = ((∅𝐻∅) ∩ (𝑧𝐻𝑤)))
4847neeq1d 2984 . . . . 5 (𝑦 = ∅ → (((∅𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅ ↔ ((∅𝐻∅) ∩ (𝑧𝐻𝑤)) ≠ ∅))
49 eqeq1 2733 . . . . . . 7 (𝑦 = ∅ → (𝑦 = 𝑤 ↔ ∅ = 𝑤))
5049anbi2d 630 . . . . . 6 (𝑦 = ∅ → ((∅ = 𝑧𝑦 = 𝑤) ↔ (∅ = 𝑧 ∧ ∅ = 𝑤)))
5150notbid 318 . . . . 5 (𝑦 = ∅ → (¬ (∅ = 𝑧𝑦 = 𝑤) ↔ ¬ (∅ = 𝑧 ∧ ∅ = 𝑤)))
5248, 51anbi12d 632 . . . 4 (𝑦 = ∅ → ((((∅𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = 𝑧𝑦 = 𝑤)) ↔ (((∅𝐻∅) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = 𝑧 ∧ ∅ = 𝑤))))
53522rexbidv 3194 . . 3 (𝑦 = ∅ → (∃𝑧𝐵𝑤𝐵 (((∅𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = 𝑧𝑦 = 𝑤)) ↔ ∃𝑧𝐵𝑤𝐵 (((∅𝐻∅) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = 𝑧 ∧ ∅ = 𝑤))))
5445, 53rspc2ev 3590 . 2 ((∅ ∈ 𝐵 ∧ ∅ ∈ 𝐵 ∧ ∃𝑧𝐵𝑤𝐵 (((∅𝐻∅) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (∅ = 𝑧 ∧ ∅ = 𝑤))) → ∃𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝐵 (((𝑥𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)))
557, 7, 37, 54syl3anc 1373 1 (𝜑 → ∃𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝐵 (((𝑥𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cin 3902  c0 4284  wf 6478  cfv 6482  (class class class)co 7349  Basecbs 17120  Hom chom 17172  SetCatcsetc 17982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-hom 17185  df-cco 17186  df-setc 17983
This theorem is referenced by:  cat1  18004
  Copyright terms: Public domain W3C validator