MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elovolmlem Structured version   Visualization version   GIF version

Theorem elovolmlem 24179
Description: Lemma for elovolm 24180 and related theorems. (Contributed by BJ, 23-Jul-2022.)
Assertion
Ref Expression
elovolmlem (𝐹 ∈ ((𝐴 ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝐹:ℕ⟶(𝐴 ∩ (ℝ × ℝ)))

Proof of Theorem elovolmlem
StepHypRef Expression
1 reex 10671 . . . 4 ℝ ∈ V
21, 1xpex 7479 . . 3 (ℝ × ℝ) ∈ V
32inex2 5191 . 2 (𝐴 ∩ (ℝ × ℝ)) ∈ V
4 nnex 11685 . 2 ℕ ∈ V
53, 4elmap 8458 1 (𝐹 ∈ ((𝐴 ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝐹:ℕ⟶(𝐴 ∩ (ℝ × ℝ)))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wcel 2111  cin 3859   × cxp 5525  wf 6335  (class class class)co 7155  m cmap 8421  cr 10579  cn 11679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-addcl 10640
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-map 8423  df-nn 11680
This theorem is referenced by:  elovolm  24180  elovolmr  24181  ovolmge0  24182  ovolgelb  24185  ovolunlem1a  24201  ovolunlem1  24202  ovoliunlem1  24207  ovoliunlem2  24208  ovolshftlem2  24215  ovolicc2  24227  ioombl1  24267
  Copyright terms: Public domain W3C validator