MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elovolmlem Structured version   Visualization version   GIF version

Theorem elovolmlem 25400
Description: Lemma for elovolm 25401 and related theorems. (Contributed by BJ, 23-Jul-2022.)
Assertion
Ref Expression
elovolmlem (𝐹 ∈ ((𝐴 ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝐹:ℕ⟶(𝐴 ∩ (ℝ × ℝ)))

Proof of Theorem elovolmlem
StepHypRef Expression
1 reex 11094 . . . 4 ℝ ∈ V
21, 1xpex 7686 . . 3 (ℝ × ℝ) ∈ V
32inex2 5256 . 2 (𝐴 ∩ (ℝ × ℝ)) ∈ V
4 nnex 12128 . 2 ℕ ∈ V
53, 4elmap 8795 1 (𝐹 ∈ ((𝐴 ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝐹:ℕ⟶(𝐴 ∩ (ℝ × ℝ)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2111  cin 3901   × cxp 5614  wf 6477  (class class class)co 7346  m cmap 8750  cr 11002  cn 12122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-addcl 11063
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-map 8752  df-nn 12123
This theorem is referenced by:  elovolm  25401  elovolmr  25402  ovolmge0  25403  ovolgelb  25406  ovolunlem1a  25422  ovolunlem1  25423  ovoliunlem1  25428  ovoliunlem2  25429  ovolshftlem2  25436  ovolicc2  25448  ioombl1  25488
  Copyright terms: Public domain W3C validator