| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin23lem12 | Structured version Visualization version GIF version | ||
| Description: The beginning of the
proof that every II-finite set (every chain of
subsets has a maximal element) is III-finite (has no denumerable
collection of subsets).
This first section is dedicated to the construction of 𝑈 and its intersection. First, the value of 𝑈 at a successor. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
| Ref | Expression |
|---|---|
| fin23lem.a | ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) |
| Ref | Expression |
|---|---|
| fin23lem12 | ⊢ (𝐴 ∈ ω → (𝑈‘suc 𝐴) = if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem.a | . . 3 ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) | |
| 2 | 1 | seqomsuc 8425 | . 2 ⊢ (𝐴 ∈ ω → (𝑈‘suc 𝐴) = (𝐴(𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢)))(𝑈‘𝐴))) |
| 3 | fvex 6871 | . . 3 ⊢ (𝑈‘𝐴) ∈ V | |
| 4 | fveq2 6858 | . . . . . . 7 ⊢ (𝑖 = 𝐴 → (𝑡‘𝑖) = (𝑡‘𝐴)) | |
| 5 | 4 | ineq1d 4182 | . . . . . 6 ⊢ (𝑖 = 𝐴 → ((𝑡‘𝑖) ∩ 𝑢) = ((𝑡‘𝐴) ∩ 𝑢)) |
| 6 | 5 | eqeq1d 2731 | . . . . 5 ⊢ (𝑖 = 𝐴 → (((𝑡‘𝑖) ∩ 𝑢) = ∅ ↔ ((𝑡‘𝐴) ∩ 𝑢) = ∅)) |
| 7 | 6, 5 | ifbieq2d 4515 | . . . 4 ⊢ (𝑖 = 𝐴 → if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢)) = if(((𝑡‘𝐴) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝐴) ∩ 𝑢))) |
| 8 | ineq2 4177 | . . . . . 6 ⊢ (𝑢 = (𝑈‘𝐴) → ((𝑡‘𝐴) ∩ 𝑢) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴))) | |
| 9 | 8 | eqeq1d 2731 | . . . . 5 ⊢ (𝑢 = (𝑈‘𝐴) → (((𝑡‘𝐴) ∩ 𝑢) = ∅ ↔ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅)) |
| 10 | id 22 | . . . . 5 ⊢ (𝑢 = (𝑈‘𝐴) → 𝑢 = (𝑈‘𝐴)) | |
| 11 | 9, 10, 8 | ifbieq12d 4517 | . . . 4 ⊢ (𝑢 = (𝑈‘𝐴) → if(((𝑡‘𝐴) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝐴) ∩ 𝑢)) = if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴)))) |
| 12 | eqid 2729 | . . . 4 ⊢ (𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))) = (𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))) | |
| 13 | 3 | inex2 5273 | . . . . 5 ⊢ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) ∈ V |
| 14 | 3, 13 | ifex 4539 | . . . 4 ⊢ if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴))) ∈ V |
| 15 | 7, 11, 12, 14 | ovmpo 7549 | . . 3 ⊢ ((𝐴 ∈ ω ∧ (𝑈‘𝐴) ∈ V) → (𝐴(𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢)))(𝑈‘𝐴)) = if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴)))) |
| 16 | 3, 15 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ω → (𝐴(𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢)))(𝑈‘𝐴)) = if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴)))) |
| 17 | 2, 16 | eqtrd 2764 | 1 ⊢ (𝐴 ∈ ω → (𝑈‘suc 𝐴) = if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∩ cin 3913 ∅c0 4296 ifcif 4488 ∪ cuni 4871 ran crn 5639 suc csuc 6334 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 ωcom 7842 seqωcseqom 8415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-seqom 8416 |
| This theorem is referenced by: fin23lem13 10285 fin23lem14 10286 fin23lem19 10289 |
| Copyright terms: Public domain | W3C validator |