MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem12 Structured version   Visualization version   GIF version

Theorem fin23lem12 9742
Description: The beginning of the proof that every II-finite set (every chain of subsets has a maximal element) is III-finite (has no denumerable collection of subsets).

This first section is dedicated to the construction of 𝑈 and its intersection. First, the value of 𝑈 at a successor. (Contributed by Stefan O'Rear, 1-Nov-2014.)

Hypothesis
Ref Expression
fin23lem.a 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
Assertion
Ref Expression
fin23lem12 (𝐴 ∈ ω → (𝑈‘suc 𝐴) = if(((𝑡𝐴) ∩ (𝑈𝐴)) = ∅, (𝑈𝐴), ((𝑡𝐴) ∩ (𝑈𝐴))))
Distinct variable groups:   𝑡,𝑖,𝑢   𝐴,𝑖,𝑢   𝑈,𝑖,𝑢
Allowed substitution hints:   𝐴(𝑡)   𝑈(𝑡)

Proof of Theorem fin23lem12
StepHypRef Expression
1 fin23lem.a . . 3 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
21seqomsuc 8076 . 2 (𝐴 ∈ ω → (𝑈‘suc 𝐴) = (𝐴(𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢)))(𝑈𝐴)))
3 fvex 6658 . . 3 (𝑈𝐴) ∈ V
4 fveq2 6645 . . . . . . 7 (𝑖 = 𝐴 → (𝑡𝑖) = (𝑡𝐴))
54ineq1d 4138 . . . . . 6 (𝑖 = 𝐴 → ((𝑡𝑖) ∩ 𝑢) = ((𝑡𝐴) ∩ 𝑢))
65eqeq1d 2800 . . . . 5 (𝑖 = 𝐴 → (((𝑡𝑖) ∩ 𝑢) = ∅ ↔ ((𝑡𝐴) ∩ 𝑢) = ∅))
76, 5ifbieq2d 4450 . . . 4 (𝑖 = 𝐴 → if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢)) = if(((𝑡𝐴) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝐴) ∩ 𝑢)))
8 ineq2 4133 . . . . . 6 (𝑢 = (𝑈𝐴) → ((𝑡𝐴) ∩ 𝑢) = ((𝑡𝐴) ∩ (𝑈𝐴)))
98eqeq1d 2800 . . . . 5 (𝑢 = (𝑈𝐴) → (((𝑡𝐴) ∩ 𝑢) = ∅ ↔ ((𝑡𝐴) ∩ (𝑈𝐴)) = ∅))
10 id 22 . . . . 5 (𝑢 = (𝑈𝐴) → 𝑢 = (𝑈𝐴))
119, 10, 8ifbieq12d 4452 . . . 4 (𝑢 = (𝑈𝐴) → if(((𝑡𝐴) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝐴) ∩ 𝑢)) = if(((𝑡𝐴) ∩ (𝑈𝐴)) = ∅, (𝑈𝐴), ((𝑡𝐴) ∩ (𝑈𝐴))))
12 eqid 2798 . . . 4 (𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))) = (𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢)))
133inex2 5186 . . . . 5 ((𝑡𝐴) ∩ (𝑈𝐴)) ∈ V
143, 13ifex 4473 . . . 4 if(((𝑡𝐴) ∩ (𝑈𝐴)) = ∅, (𝑈𝐴), ((𝑡𝐴) ∩ (𝑈𝐴))) ∈ V
157, 11, 12, 14ovmpo 7289 . . 3 ((𝐴 ∈ ω ∧ (𝑈𝐴) ∈ V) → (𝐴(𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢)))(𝑈𝐴)) = if(((𝑡𝐴) ∩ (𝑈𝐴)) = ∅, (𝑈𝐴), ((𝑡𝐴) ∩ (𝑈𝐴))))
163, 15mpan2 690 . 2 (𝐴 ∈ ω → (𝐴(𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢)))(𝑈𝐴)) = if(((𝑡𝐴) ∩ (𝑈𝐴)) = ∅, (𝑈𝐴), ((𝑡𝐴) ∩ (𝑈𝐴))))
172, 16eqtrd 2833 1 (𝐴 ∈ ω → (𝑈‘suc 𝐴) = if(((𝑡𝐴) ∩ (𝑈𝐴)) = ∅, (𝑈𝐴), ((𝑡𝐴) ∩ (𝑈𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  Vcvv 3441  cin 3880  c0 4243  ifcif 4425   cuni 4800  ran crn 5520  suc csuc 6161  cfv 6324  (class class class)co 7135  cmpo 7137  ωcom 7560  seqωcseqom 8066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-seqom 8067
This theorem is referenced by:  fin23lem13  9743  fin23lem14  9744  fin23lem19  9747
  Copyright terms: Public domain W3C validator