| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin23lem12 | Structured version Visualization version GIF version | ||
| Description: The beginning of the
proof that every II-finite set (every chain of
subsets has a maximal element) is III-finite (has no denumerable
collection of subsets).
This first section is dedicated to the construction of 𝑈 and its intersection. First, the value of 𝑈 at a successor. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
| Ref | Expression |
|---|---|
| fin23lem.a | ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) |
| Ref | Expression |
|---|---|
| fin23lem12 | ⊢ (𝐴 ∈ ω → (𝑈‘suc 𝐴) = if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem.a | . . 3 ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) | |
| 2 | 1 | seqomsuc 8376 | . 2 ⊢ (𝐴 ∈ ω → (𝑈‘suc 𝐴) = (𝐴(𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢)))(𝑈‘𝐴))) |
| 3 | fvex 6835 | . . 3 ⊢ (𝑈‘𝐴) ∈ V | |
| 4 | fveq2 6822 | . . . . . . 7 ⊢ (𝑖 = 𝐴 → (𝑡‘𝑖) = (𝑡‘𝐴)) | |
| 5 | 4 | ineq1d 4166 | . . . . . 6 ⊢ (𝑖 = 𝐴 → ((𝑡‘𝑖) ∩ 𝑢) = ((𝑡‘𝐴) ∩ 𝑢)) |
| 6 | 5 | eqeq1d 2733 | . . . . 5 ⊢ (𝑖 = 𝐴 → (((𝑡‘𝑖) ∩ 𝑢) = ∅ ↔ ((𝑡‘𝐴) ∩ 𝑢) = ∅)) |
| 7 | 6, 5 | ifbieq2d 4499 | . . . 4 ⊢ (𝑖 = 𝐴 → if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢)) = if(((𝑡‘𝐴) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝐴) ∩ 𝑢))) |
| 8 | ineq2 4161 | . . . . . 6 ⊢ (𝑢 = (𝑈‘𝐴) → ((𝑡‘𝐴) ∩ 𝑢) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴))) | |
| 9 | 8 | eqeq1d 2733 | . . . . 5 ⊢ (𝑢 = (𝑈‘𝐴) → (((𝑡‘𝐴) ∩ 𝑢) = ∅ ↔ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅)) |
| 10 | id 22 | . . . . 5 ⊢ (𝑢 = (𝑈‘𝐴) → 𝑢 = (𝑈‘𝐴)) | |
| 11 | 9, 10, 8 | ifbieq12d 4501 | . . . 4 ⊢ (𝑢 = (𝑈‘𝐴) → if(((𝑡‘𝐴) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝐴) ∩ 𝑢)) = if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴)))) |
| 12 | eqid 2731 | . . . 4 ⊢ (𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))) = (𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))) | |
| 13 | 3 | inex2 5254 | . . . . 5 ⊢ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) ∈ V |
| 14 | 3, 13 | ifex 4523 | . . . 4 ⊢ if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴))) ∈ V |
| 15 | 7, 11, 12, 14 | ovmpo 7506 | . . 3 ⊢ ((𝐴 ∈ ω ∧ (𝑈‘𝐴) ∈ V) → (𝐴(𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢)))(𝑈‘𝐴)) = if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴)))) |
| 16 | 3, 15 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ω → (𝐴(𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢)))(𝑈‘𝐴)) = if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴)))) |
| 17 | 2, 16 | eqtrd 2766 | 1 ⊢ (𝐴 ∈ ω → (𝑈‘suc 𝐴) = if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 ∅c0 4280 ifcif 4472 ∪ cuni 4856 ran crn 5615 suc csuc 6308 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ωcom 7796 seqωcseqom 8366 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-seqom 8367 |
| This theorem is referenced by: fin23lem13 10223 fin23lem14 10224 fin23lem19 10227 |
| Copyright terms: Public domain | W3C validator |