MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem12 Structured version   Visualization version   GIF version

Theorem fin23lem12 10274
Description: The beginning of the proof that every II-finite set (every chain of subsets has a maximal element) is III-finite (has no denumerable collection of subsets).

This first section is dedicated to the construction of 𝑈 and its intersection. First, the value of 𝑈 at a successor. (Contributed by Stefan O'Rear, 1-Nov-2014.)

Hypothesis
Ref Expression
fin23lem.a 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
Assertion
Ref Expression
fin23lem12 (𝐴 ∈ ω → (𝑈‘suc 𝐴) = if(((𝑡𝐴) ∩ (𝑈𝐴)) = ∅, (𝑈𝐴), ((𝑡𝐴) ∩ (𝑈𝐴))))
Distinct variable groups:   𝑡,𝑖,𝑢   𝐴,𝑖,𝑢   𝑈,𝑖,𝑢
Allowed substitution hints:   𝐴(𝑡)   𝑈(𝑡)

Proof of Theorem fin23lem12
StepHypRef Expression
1 fin23lem.a . . 3 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
21seqomsuc 8408 . 2 (𝐴 ∈ ω → (𝑈‘suc 𝐴) = (𝐴(𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢)))(𝑈𝐴)))
3 fvex 6860 . . 3 (𝑈𝐴) ∈ V
4 fveq2 6847 . . . . . . 7 (𝑖 = 𝐴 → (𝑡𝑖) = (𝑡𝐴))
54ineq1d 4176 . . . . . 6 (𝑖 = 𝐴 → ((𝑡𝑖) ∩ 𝑢) = ((𝑡𝐴) ∩ 𝑢))
65eqeq1d 2739 . . . . 5 (𝑖 = 𝐴 → (((𝑡𝑖) ∩ 𝑢) = ∅ ↔ ((𝑡𝐴) ∩ 𝑢) = ∅))
76, 5ifbieq2d 4517 . . . 4 (𝑖 = 𝐴 → if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢)) = if(((𝑡𝐴) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝐴) ∩ 𝑢)))
8 ineq2 4171 . . . . . 6 (𝑢 = (𝑈𝐴) → ((𝑡𝐴) ∩ 𝑢) = ((𝑡𝐴) ∩ (𝑈𝐴)))
98eqeq1d 2739 . . . . 5 (𝑢 = (𝑈𝐴) → (((𝑡𝐴) ∩ 𝑢) = ∅ ↔ ((𝑡𝐴) ∩ (𝑈𝐴)) = ∅))
10 id 22 . . . . 5 (𝑢 = (𝑈𝐴) → 𝑢 = (𝑈𝐴))
119, 10, 8ifbieq12d 4519 . . . 4 (𝑢 = (𝑈𝐴) → if(((𝑡𝐴) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝐴) ∩ 𝑢)) = if(((𝑡𝐴) ∩ (𝑈𝐴)) = ∅, (𝑈𝐴), ((𝑡𝐴) ∩ (𝑈𝐴))))
12 eqid 2737 . . . 4 (𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))) = (𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢)))
133inex2 5280 . . . . 5 ((𝑡𝐴) ∩ (𝑈𝐴)) ∈ V
143, 13ifex 4541 . . . 4 if(((𝑡𝐴) ∩ (𝑈𝐴)) = ∅, (𝑈𝐴), ((𝑡𝐴) ∩ (𝑈𝐴))) ∈ V
157, 11, 12, 14ovmpo 7520 . . 3 ((𝐴 ∈ ω ∧ (𝑈𝐴) ∈ V) → (𝐴(𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢)))(𝑈𝐴)) = if(((𝑡𝐴) ∩ (𝑈𝐴)) = ∅, (𝑈𝐴), ((𝑡𝐴) ∩ (𝑈𝐴))))
163, 15mpan2 690 . 2 (𝐴 ∈ ω → (𝐴(𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢)))(𝑈𝐴)) = if(((𝑡𝐴) ∩ (𝑈𝐴)) = ∅, (𝑈𝐴), ((𝑡𝐴) ∩ (𝑈𝐴))))
172, 16eqtrd 2777 1 (𝐴 ∈ ω → (𝑈‘suc 𝐴) = if(((𝑡𝐴) ∩ (𝑈𝐴)) = ∅, (𝑈𝐴), ((𝑡𝐴) ∩ (𝑈𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  Vcvv 3448  cin 3914  c0 4287  ifcif 4491   cuni 4870  ran crn 5639  suc csuc 6324  cfv 6501  (class class class)co 7362  cmpo 7364  ωcom 7807  seqωcseqom 8398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-seqom 8399
This theorem is referenced by:  fin23lem13  10275  fin23lem14  10276  fin23lem19  10279
  Copyright terms: Public domain W3C validator