![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin23lem12 | Structured version Visualization version GIF version |
Description: The beginning of the
proof that every II-finite set (every chain of
subsets has a maximal element) is III-finite (has no denumerable
collection of subsets).
This first section is dedicated to the construction of 𝑈 and its intersection. First, the value of 𝑈 at a successor. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
Ref | Expression |
---|---|
fin23lem.a | ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) |
Ref | Expression |
---|---|
fin23lem12 | ⊢ (𝐴 ∈ ω → (𝑈‘suc 𝐴) = if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fin23lem.a | . . 3 ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) | |
2 | 1 | seqomsuc 8457 | . 2 ⊢ (𝐴 ∈ ω → (𝑈‘suc 𝐴) = (𝐴(𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢)))(𝑈‘𝐴))) |
3 | fvex 6905 | . . 3 ⊢ (𝑈‘𝐴) ∈ V | |
4 | fveq2 6892 | . . . . . . 7 ⊢ (𝑖 = 𝐴 → (𝑡‘𝑖) = (𝑡‘𝐴)) | |
5 | 4 | ineq1d 4212 | . . . . . 6 ⊢ (𝑖 = 𝐴 → ((𝑡‘𝑖) ∩ 𝑢) = ((𝑡‘𝐴) ∩ 𝑢)) |
6 | 5 | eqeq1d 2735 | . . . . 5 ⊢ (𝑖 = 𝐴 → (((𝑡‘𝑖) ∩ 𝑢) = ∅ ↔ ((𝑡‘𝐴) ∩ 𝑢) = ∅)) |
7 | 6, 5 | ifbieq2d 4555 | . . . 4 ⊢ (𝑖 = 𝐴 → if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢)) = if(((𝑡‘𝐴) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝐴) ∩ 𝑢))) |
8 | ineq2 4207 | . . . . . 6 ⊢ (𝑢 = (𝑈‘𝐴) → ((𝑡‘𝐴) ∩ 𝑢) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴))) | |
9 | 8 | eqeq1d 2735 | . . . . 5 ⊢ (𝑢 = (𝑈‘𝐴) → (((𝑡‘𝐴) ∩ 𝑢) = ∅ ↔ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅)) |
10 | id 22 | . . . . 5 ⊢ (𝑢 = (𝑈‘𝐴) → 𝑢 = (𝑈‘𝐴)) | |
11 | 9, 10, 8 | ifbieq12d 4557 | . . . 4 ⊢ (𝑢 = (𝑈‘𝐴) → if(((𝑡‘𝐴) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝐴) ∩ 𝑢)) = if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴)))) |
12 | eqid 2733 | . . . 4 ⊢ (𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))) = (𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))) | |
13 | 3 | inex2 5319 | . . . . 5 ⊢ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) ∈ V |
14 | 3, 13 | ifex 4579 | . . . 4 ⊢ if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴))) ∈ V |
15 | 7, 11, 12, 14 | ovmpo 7568 | . . 3 ⊢ ((𝐴 ∈ ω ∧ (𝑈‘𝐴) ∈ V) → (𝐴(𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢)))(𝑈‘𝐴)) = if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴)))) |
16 | 3, 15 | mpan2 690 | . 2 ⊢ (𝐴 ∈ ω → (𝐴(𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢)))(𝑈‘𝐴)) = if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴)))) |
17 | 2, 16 | eqtrd 2773 | 1 ⊢ (𝐴 ∈ ω → (𝑈‘suc 𝐴) = if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∩ cin 3948 ∅c0 4323 ifcif 4529 ∪ cuni 4909 ran crn 5678 suc csuc 6367 ‘cfv 6544 (class class class)co 7409 ∈ cmpo 7411 ωcom 7855 seqωcseqom 8447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-seqom 8448 |
This theorem is referenced by: fin23lem13 10327 fin23lem14 10328 fin23lem19 10331 |
Copyright terms: Public domain | W3C validator |