![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin23lem12 | Structured version Visualization version GIF version |
Description: The beginning of the
proof that every II-finite set (every chain of
subsets has a maximal element) is III-finite (has no denumerable
collection of subsets).
This first section is dedicated to the construction of 𝑈 and its intersection. First, the value of 𝑈 at a successor. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
Ref | Expression |
---|---|
fin23lem.a | ⊢ 𝑈 = seq𝜔((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) |
Ref | Expression |
---|---|
fin23lem12 | ⊢ (𝐴 ∈ ω → (𝑈‘suc 𝐴) = if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fin23lem.a | . . 3 ⊢ 𝑈 = seq𝜔((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) | |
2 | 1 | seqomsuc 7790 | . 2 ⊢ (𝐴 ∈ ω → (𝑈‘suc 𝐴) = (𝐴(𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢)))(𝑈‘𝐴))) |
3 | fvex 6423 | . . 3 ⊢ (𝑈‘𝐴) ∈ V | |
4 | fveq2 6410 | . . . . . . 7 ⊢ (𝑖 = 𝐴 → (𝑡‘𝑖) = (𝑡‘𝐴)) | |
5 | 4 | ineq1d 4010 | . . . . . 6 ⊢ (𝑖 = 𝐴 → ((𝑡‘𝑖) ∩ 𝑢) = ((𝑡‘𝐴) ∩ 𝑢)) |
6 | 5 | eqeq1d 2800 | . . . . 5 ⊢ (𝑖 = 𝐴 → (((𝑡‘𝑖) ∩ 𝑢) = ∅ ↔ ((𝑡‘𝐴) ∩ 𝑢) = ∅)) |
7 | 6, 5 | ifbieq2d 4301 | . . . 4 ⊢ (𝑖 = 𝐴 → if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢)) = if(((𝑡‘𝐴) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝐴) ∩ 𝑢))) |
8 | ineq2 4005 | . . . . . 6 ⊢ (𝑢 = (𝑈‘𝐴) → ((𝑡‘𝐴) ∩ 𝑢) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴))) | |
9 | 8 | eqeq1d 2800 | . . . . 5 ⊢ (𝑢 = (𝑈‘𝐴) → (((𝑡‘𝐴) ∩ 𝑢) = ∅ ↔ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅)) |
10 | id 22 | . . . . 5 ⊢ (𝑢 = (𝑈‘𝐴) → 𝑢 = (𝑈‘𝐴)) | |
11 | 9, 10, 8 | ifbieq12d 4303 | . . . 4 ⊢ (𝑢 = (𝑈‘𝐴) → if(((𝑡‘𝐴) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝐴) ∩ 𝑢)) = if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴)))) |
12 | eqid 2798 | . . . 4 ⊢ (𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))) = (𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))) | |
13 | 3 | inex2 4994 | . . . . 5 ⊢ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) ∈ V |
14 | 3, 13 | ifex 4324 | . . . 4 ⊢ if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴))) ∈ V |
15 | 7, 11, 12, 14 | ovmpt2 7029 | . . 3 ⊢ ((𝐴 ∈ ω ∧ (𝑈‘𝐴) ∈ V) → (𝐴(𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢)))(𝑈‘𝐴)) = if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴)))) |
16 | 3, 15 | mpan2 683 | . 2 ⊢ (𝐴 ∈ ω → (𝐴(𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢)))(𝑈‘𝐴)) = if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴)))) |
17 | 2, 16 | eqtrd 2832 | 1 ⊢ (𝐴 ∈ ω → (𝑈‘suc 𝐴) = if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 Vcvv 3384 ∩ cin 3767 ∅c0 4114 ifcif 4276 ∪ cuni 4627 ran crn 5312 suc csuc 5942 ‘cfv 6100 (class class class)co 6877 ↦ cmpt2 6879 ωcom 7298 seq𝜔cseqom 7780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2776 ax-sep 4974 ax-nul 4982 ax-pow 5034 ax-pr 5096 ax-un 7182 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2785 df-cleq 2791 df-clel 2794 df-nfc 2929 df-ne 2971 df-ral 3093 df-rex 3094 df-reu 3095 df-rab 3097 df-v 3386 df-sbc 3633 df-csb 3728 df-dif 3771 df-un 3773 df-in 3775 df-ss 3782 df-pss 3784 df-nul 4115 df-if 4277 df-pw 4350 df-sn 4368 df-pr 4370 df-tp 4372 df-op 4374 df-uni 4628 df-iun 4711 df-br 4843 df-opab 4905 df-mpt 4922 df-tr 4945 df-id 5219 df-eprel 5224 df-po 5232 df-so 5233 df-fr 5270 df-we 5272 df-xp 5317 df-rel 5318 df-cnv 5319 df-co 5320 df-dm 5321 df-rn 5322 df-res 5323 df-ima 5324 df-pred 5897 df-ord 5943 df-on 5944 df-lim 5945 df-suc 5946 df-iota 6063 df-fun 6102 df-fn 6103 df-f 6104 df-f1 6105 df-fo 6106 df-f1o 6107 df-fv 6108 df-ov 6880 df-oprab 6881 df-mpt2 6882 df-om 7299 df-2nd 7401 df-wrecs 7644 df-recs 7706 df-rdg 7744 df-seqom 7781 |
This theorem is referenced by: fin23lem13 9441 fin23lem14 9442 fin23lem19 9445 |
Copyright terms: Public domain | W3C validator |