Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnfi | Structured version Visualization version GIF version |
Description: Natural numbers are finite sets. (Contributed by Stefan O'Rear, 21-Mar-2015.) Avoid ax-pow 5303. (Revised by BTernaryTau, 23-Sep-2024.) |
Ref | Expression |
---|---|
nnfi | ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enrefnn 8889 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ≈ 𝐴) | |
2 | breq2 5091 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐴 ≈ 𝑥 ↔ 𝐴 ≈ 𝐴)) | |
3 | 2 | rspcev 3570 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≈ 𝐴) → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
4 | 1, 3 | mpdan 684 | . 2 ⊢ (𝐴 ∈ ω → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
5 | isfi 8814 | . 2 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
6 | 4, 5 | sylibr 233 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ∃wrex 3071 class class class wbr 5087 ωcom 7757 ≈ cen 8778 Fincfn 8781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 ax-un 7628 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-om 7758 df-en 8782 df-fin 8785 |
This theorem is referenced by: ssnnfi 9011 enfii 9031 phplem1 9049 phplem2 9050 php 9052 php2 9053 php3 9054 nndomog 9058 onomeneq 9070 sucdom 9077 ominf 9100 cardnn 9792 en2eqpr 9836 en2eleq 9837 infxpenlem 9842 dfac12k 9976 ficardadju 10028 pwsdompw 10033 ackbij2lem1 10048 ackbij1lem3 10051 ackbij1lem5 10053 ackbij1lem14 10062 ackbij1b 10068 fin23lem23 10155 fin23lem22 10156 domtriomlem 10271 gchdju1 10485 gch2 10504 omina 10520 hashgval2 14165 hashdom 14166 hashp1i 14190 hash1snb 14206 hash2pr 14255 pr2pwpr 14265 hash3tr 14276 xpsfrnel 17343 symggen 19147 psgnunilem1 19170 lt6abl 19564 simpgnsgd 19771 znfld 20840 frgpcyg 20853 xpsmet 23607 xpsxms 23762 xpsms 23763 isppw 26335 unidifsnel 30991 unidifsnne 30992 finxpreclem4 35621 harinf 41060 frlmpwfi 41127 infordmin 41360 |
Copyright terms: Public domain | W3C validator |