![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnfi | Structured version Visualization version GIF version |
Description: Natural numbers are finite sets. (Contributed by Stefan O'Rear, 21-Mar-2015.) Avoid ax-pow 5383. (Revised by BTernaryTau, 23-Sep-2024.) |
Ref | Expression |
---|---|
nnfi | ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enrefnn 9113 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ≈ 𝐴) | |
2 | breq2 5170 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐴 ≈ 𝑥 ↔ 𝐴 ≈ 𝐴)) | |
3 | 2 | rspcev 3635 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≈ 𝐴) → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
4 | 1, 3 | mpdan 686 | . 2 ⊢ (𝐴 ∈ ω → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
5 | isfi 9036 | . 2 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
6 | 4, 5 | sylibr 234 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∃wrex 3076 class class class wbr 5166 ωcom 7903 ≈ cen 9000 Fincfn 9003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-om 7904 df-en 9004 df-fin 9007 |
This theorem is referenced by: ssnnfi 9235 enfii 9252 phplem1 9270 phplem2 9271 php 9273 php2 9274 php3 9275 nndomog 9279 onomeneq 9291 sucdom 9298 ominf 9321 findcard3 9346 nnsdomg 9363 infsdomnn 9366 fiint 9394 cardnn 10032 en2eqpr 10076 en2eleq 10077 infxpenlem 10082 dfac12k 10217 ficardadju 10269 pwsdompw 10272 ackbij2lem1 10287 ackbij1lem3 10290 ackbij1lem5 10292 ackbij1lem14 10301 ackbij1b 10307 fin23lem23 10395 fin23lem22 10396 domtriomlem 10511 gchdju1 10725 gch2 10744 omina 10760 hashgval2 14427 hashdom 14428 hashp1i 14452 hash1snb 14468 hash2pr 14518 pr2pwpr 14528 hash3tr 14540 xpsfrnel 17622 symggen 19512 psgnunilem1 19535 lt6abl 19937 simpgnsgd 20144 znfld 21602 frgpcyg 21615 xpsmet 24413 xpsxms 24568 xpsms 24569 isppw 27175 madefi 27968 oldfi 27969 unidifsnel 32563 unidifsnne 32564 finxpreclem4 37360 harinf 42991 frlmpwfi 43055 cantnfub2 43284 infordmin 43494 |
Copyright terms: Public domain | W3C validator |