| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnfi | Structured version Visualization version GIF version | ||
| Description: Natural numbers are finite sets. (Contributed by Stefan O'Rear, 21-Mar-2015.) Avoid ax-pow 5315. (Revised by BTernaryTau, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| nnfi | ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrefnn 8995 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ≈ 𝐴) | |
| 2 | breq2 5106 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐴 ≈ 𝑥 ↔ 𝐴 ≈ 𝐴)) | |
| 3 | 2 | rspcev 3585 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≈ 𝐴) → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| 4 | 1, 3 | mpdan 687 | . 2 ⊢ (𝐴 ∈ ω → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| 5 | isfi 8924 | . 2 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
| 6 | 4, 5 | sylibr 234 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3053 class class class wbr 5102 ωcom 7822 ≈ cen 8892 Fincfn 8895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-om 7823 df-en 8896 df-fin 8899 |
| This theorem is referenced by: ssnnfi 9110 enfii 9127 phplem1 9145 phplem2 9146 php 9148 php2 9149 php3 9150 nndomog 9154 onomeneq 9155 sucdom 9160 ominf 9181 findcard3 9205 nnsdomg 9222 infsdomnn 9225 fiint 9253 cardnn 9892 en2eqpr 9936 en2eleq 9937 infxpenlem 9942 dfac12k 10077 ficardadju 10129 pwsdompw 10132 ackbij2lem1 10147 ackbij1lem3 10150 ackbij1lem5 10152 ackbij1lem14 10161 ackbij1b 10167 fin23lem23 10255 fin23lem22 10256 domtriomlem 10371 gchdju1 10585 gch2 10604 omina 10620 hashgval2 14319 hashdom 14320 hashp1i 14344 hash1snb 14360 hash2pr 14410 pr2pwpr 14420 hash3tr 14432 xpsfrnel 17501 symggen 19384 psgnunilem1 19407 lt6abl 19809 simpgnsgd 20016 znfld 21502 frgpcyg 21515 xpsmet 24303 xpsxms 24455 xpsms 24456 isppw 27057 madefi 27862 oldfi 27863 unidifsnel 32514 unidifsnne 32515 finxpreclem4 37375 harinf 43016 frlmpwfi 43080 cantnfub2 43304 infordmin 43514 |
| Copyright terms: Public domain | W3C validator |