| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnfi | Structured version Visualization version GIF version | ||
| Description: Natural numbers are finite sets. (Contributed by Stefan O'Rear, 21-Mar-2015.) Avoid ax-pow 5301. (Revised by BTernaryTau, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| nnfi | ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrefnn 8968 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ≈ 𝐴) | |
| 2 | breq2 5093 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐴 ≈ 𝑥 ↔ 𝐴 ≈ 𝐴)) | |
| 3 | 2 | rspcev 3572 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≈ 𝐴) → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| 4 | 1, 3 | mpdan 687 | . 2 ⊢ (𝐴 ∈ ω → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| 5 | isfi 8898 | . 2 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
| 6 | 4, 5 | sylibr 234 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∃wrex 3056 class class class wbr 5089 ωcom 7796 ≈ cen 8866 Fincfn 8869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-om 7797 df-en 8870 df-fin 8873 |
| This theorem is referenced by: ssnnfi 9079 enfii 9095 phplem1 9113 phplem2 9114 php 9116 php2 9117 php3 9118 nndomog 9122 onomeneq 9123 sucdom 9128 ominf 9148 findcard3 9167 nnsdomg 9183 infsdomnn 9185 fiint 9211 cardnn 9856 en2eqpr 9898 en2eleq 9899 infxpenlem 9904 dfac12k 10039 ficardadju 10091 pwsdompw 10094 ackbij2lem1 10109 ackbij1lem3 10112 ackbij1lem5 10114 ackbij1lem14 10123 ackbij1b 10129 fin23lem23 10217 fin23lem22 10218 domtriomlem 10333 gchdju1 10547 gch2 10566 omina 10582 hashgval2 14285 hashdom 14286 hashp1i 14310 hash1snb 14326 hash2pr 14376 pr2pwpr 14386 hash3tr 14398 xpsfrnel 17466 symggen 19382 psgnunilem1 19405 lt6abl 19807 simpgnsgd 20014 znfld 21497 frgpcyg 21510 xpsmet 24297 xpsxms 24449 xpsms 24450 isppw 27051 madefi 27858 oldfi 27859 unidifsnel 32515 unidifsnne 32516 fineqvnttrclse 35144 finxpreclem4 37438 harinf 43137 frlmpwfi 43201 cantnfub2 43425 infordmin 43635 |
| Copyright terms: Public domain | W3C validator |