| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnfi | Structured version Visualization version GIF version | ||
| Description: Natural numbers are finite sets. (Contributed by Stefan O'Rear, 21-Mar-2015.) Avoid ax-pow 5323. (Revised by BTernaryTau, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| nnfi | ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrefnn 9021 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ≈ 𝐴) | |
| 2 | breq2 5114 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐴 ≈ 𝑥 ↔ 𝐴 ≈ 𝐴)) | |
| 3 | 2 | rspcev 3591 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≈ 𝐴) → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| 4 | 1, 3 | mpdan 687 | . 2 ⊢ (𝐴 ∈ ω → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| 5 | isfi 8950 | . 2 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
| 6 | 4, 5 | sylibr 234 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3054 class class class wbr 5110 ωcom 7845 ≈ cen 8918 Fincfn 8921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-om 7846 df-en 8922 df-fin 8925 |
| This theorem is referenced by: ssnnfi 9139 enfii 9156 phplem1 9174 phplem2 9175 php 9177 php2 9178 php3 9179 nndomog 9183 onomeneq 9184 sucdom 9189 ominf 9212 findcard3 9236 nnsdomg 9253 infsdomnn 9256 fiint 9284 cardnn 9923 en2eqpr 9967 en2eleq 9968 infxpenlem 9973 dfac12k 10108 ficardadju 10160 pwsdompw 10163 ackbij2lem1 10178 ackbij1lem3 10181 ackbij1lem5 10183 ackbij1lem14 10192 ackbij1b 10198 fin23lem23 10286 fin23lem22 10287 domtriomlem 10402 gchdju1 10616 gch2 10635 omina 10651 hashgval2 14350 hashdom 14351 hashp1i 14375 hash1snb 14391 hash2pr 14441 pr2pwpr 14451 hash3tr 14463 xpsfrnel 17532 symggen 19407 psgnunilem1 19430 lt6abl 19832 simpgnsgd 20039 znfld 21477 frgpcyg 21490 xpsmet 24277 xpsxms 24429 xpsms 24430 isppw 27031 madefi 27831 oldfi 27832 unidifsnel 32471 unidifsnne 32472 finxpreclem4 37389 harinf 43030 frlmpwfi 43094 cantnfub2 43318 infordmin 43528 |
| Copyright terms: Public domain | W3C validator |