Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnfi | Structured version Visualization version GIF version |
Description: Natural numbers are finite sets. (Contributed by Stefan O'Rear, 21-Mar-2015.) Avoid ax-pow 5289. (Revised by BTernaryTau, 23-Sep-2024.) |
Ref | Expression |
---|---|
nnfi | ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enrefnn 8846 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ≈ 𝐴) | |
2 | breq2 5079 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐴 ≈ 𝑥 ↔ 𝐴 ≈ 𝐴)) | |
3 | 2 | rspcev 3562 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≈ 𝐴) → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
4 | 1, 3 | mpdan 684 | . 2 ⊢ (𝐴 ∈ ω → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
5 | isfi 8773 | . 2 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
6 | 4, 5 | sylibr 233 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 ∃wrex 3066 class class class wbr 5075 ωcom 7721 ≈ cen 8739 Fincfn 8742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 ax-un 7597 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-om 7722 df-en 8743 df-fin 8746 |
This theorem is referenced by: ssnnfi 8961 enfii 8981 phplem1 8999 phplem2 9000 php 9002 php2 9003 php3 9004 nndomog 9008 onomeneq 9020 sucdom 9027 cardnn 9730 en2eqpr 9772 en2eleq 9773 infxpenlem 9778 dfac12k 9912 ficardadju 9964 pwsdompw 9969 ackbij2lem1 9984 ackbij1lem3 9987 ackbij1lem5 9989 ackbij1lem14 9998 ackbij1b 10004 fin23lem23 10091 fin23lem22 10092 domtriomlem 10207 gchdju1 10421 gch2 10440 omina 10456 hashgval2 14102 hashdom 14103 hashp1i 14127 hash1snb 14143 hash2pr 14192 pr2pwpr 14202 hash3tr 14213 xpsfrnel 17282 symggen 19087 psgnunilem1 19110 lt6abl 19505 simpgnsgd 19712 znfld 20777 frgpcyg 20790 xpsmet 23544 xpsxms 23699 xpsms 23700 isppw 26272 unidifsnel 30892 unidifsnne 30893 finxpreclem4 35574 harinf 40863 frlmpwfi 40930 infordmin 41146 |
Copyright terms: Public domain | W3C validator |