| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnfi | Structured version Visualization version GIF version | ||
| Description: Natural numbers are finite sets. (Contributed by Stefan O'Rear, 21-Mar-2015.) Avoid ax-pow 5335. (Revised by BTernaryTau, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| nnfi | ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrefnn 9059 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ≈ 𝐴) | |
| 2 | breq2 5123 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐴 ≈ 𝑥 ↔ 𝐴 ≈ 𝐴)) | |
| 3 | 2 | rspcev 3601 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≈ 𝐴) → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| 4 | 1, 3 | mpdan 687 | . 2 ⊢ (𝐴 ∈ ω → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| 5 | isfi 8988 | . 2 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
| 6 | 4, 5 | sylibr 234 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ∃wrex 3060 class class class wbr 5119 ωcom 7859 ≈ cen 8954 Fincfn 8957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-om 7860 df-en 8958 df-fin 8961 |
| This theorem is referenced by: ssnnfi 9181 enfii 9198 phplem1 9216 phplem2 9217 php 9219 php2 9220 php3 9221 nndomog 9225 onomeneq 9235 sucdom 9241 ominf 9264 findcard3 9288 nnsdomg 9305 infsdomnn 9308 fiint 9336 cardnn 9975 en2eqpr 10019 en2eleq 10020 infxpenlem 10025 dfac12k 10160 ficardadju 10212 pwsdompw 10215 ackbij2lem1 10230 ackbij1lem3 10233 ackbij1lem5 10235 ackbij1lem14 10244 ackbij1b 10250 fin23lem23 10338 fin23lem22 10339 domtriomlem 10454 gchdju1 10668 gch2 10687 omina 10703 hashgval2 14394 hashdom 14395 hashp1i 14419 hash1snb 14435 hash2pr 14485 pr2pwpr 14495 hash3tr 14507 xpsfrnel 17574 symggen 19449 psgnunilem1 19472 lt6abl 19874 simpgnsgd 20081 znfld 21519 frgpcyg 21532 xpsmet 24319 xpsxms 24471 xpsms 24472 isppw 27074 madefi 27867 oldfi 27868 unidifsnel 32462 unidifsnne 32463 finxpreclem4 37358 harinf 43005 frlmpwfi 43069 cantnfub2 43293 infordmin 43503 |
| Copyright terms: Public domain | W3C validator |