| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnfi | Structured version Visualization version GIF version | ||
| Description: Natural numbers are finite sets. (Contributed by Stefan O'Rear, 21-Mar-2015.) Avoid ax-pow 5304. (Revised by BTernaryTau, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| nnfi | ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrefnn 8972 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ≈ 𝐴) | |
| 2 | breq2 5096 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐴 ≈ 𝑥 ↔ 𝐴 ≈ 𝐴)) | |
| 3 | 2 | rspcev 3577 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≈ 𝐴) → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| 4 | 1, 3 | mpdan 687 | . 2 ⊢ (𝐴 ∈ ω → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| 5 | isfi 8901 | . 2 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
| 6 | 4, 5 | sylibr 234 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3053 class class class wbr 5092 ωcom 7799 ≈ cen 8869 Fincfn 8872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-om 7800 df-en 8873 df-fin 8876 |
| This theorem is referenced by: ssnnfi 9083 enfii 9100 phplem1 9118 phplem2 9119 php 9121 php2 9122 php3 9123 nndomog 9127 onomeneq 9128 sucdom 9133 ominf 9153 findcard3 9172 nnsdomg 9188 infsdomnn 9190 fiint 9216 cardnn 9859 en2eqpr 9901 en2eleq 9902 infxpenlem 9907 dfac12k 10042 ficardadju 10094 pwsdompw 10097 ackbij2lem1 10112 ackbij1lem3 10115 ackbij1lem5 10117 ackbij1lem14 10126 ackbij1b 10132 fin23lem23 10220 fin23lem22 10221 domtriomlem 10336 gchdju1 10550 gch2 10569 omina 10585 hashgval2 14285 hashdom 14286 hashp1i 14310 hash1snb 14326 hash2pr 14376 pr2pwpr 14386 hash3tr 14398 xpsfrnel 17466 symggen 19349 psgnunilem1 19372 lt6abl 19774 simpgnsgd 19981 znfld 21467 frgpcyg 21480 xpsmet 24268 xpsxms 24420 xpsms 24421 isppw 27022 madefi 27827 oldfi 27828 unidifsnel 32479 unidifsnne 32480 fineqvnttrclse 35077 finxpreclem4 37372 harinf 43011 frlmpwfi 43075 cantnfub2 43299 infordmin 43509 |
| Copyright terms: Public domain | W3C validator |