| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > invid | Structured version Visualization version GIF version | ||
| Description: The inverse of the identity is the identity. (Contributed by AV, 8-Apr-2020.) |
| Ref | Expression |
|---|---|
| invid.b | ⊢ 𝐵 = (Base‘𝐶) |
| invid.i | ⊢ 𝐼 = (Id‘𝐶) |
| invid.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| invid.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| invid | ⊢ (𝜑 → (𝐼‘𝑋)(𝑋(Inv‘𝐶)𝑋)(𝐼‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invid.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | invid.i | . . 3 ⊢ 𝐼 = (Id‘𝐶) | |
| 3 | invid.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | invid.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | 1, 2, 3, 4 | sectid 17786 | . 2 ⊢ (𝜑 → (𝐼‘𝑋)(𝑋(Sect‘𝐶)𝑋)(𝐼‘𝑋)) |
| 6 | eqid 2734 | . . 3 ⊢ (Inv‘𝐶) = (Inv‘𝐶) | |
| 7 | eqid 2734 | . . 3 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
| 8 | 1, 6, 3, 4, 4, 7 | isinv 17760 | . 2 ⊢ (𝜑 → ((𝐼‘𝑋)(𝑋(Inv‘𝐶)𝑋)(𝐼‘𝑋) ↔ ((𝐼‘𝑋)(𝑋(Sect‘𝐶)𝑋)(𝐼‘𝑋) ∧ (𝐼‘𝑋)(𝑋(Sect‘𝐶)𝑋)(𝐼‘𝑋)))) |
| 9 | 5, 5, 8 | mpbir2and 713 | 1 ⊢ (𝜑 → (𝐼‘𝑋)(𝑋(Inv‘𝐶)𝑋)(𝐼‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 class class class wbr 5117 ‘cfv 6528 (class class class)co 7400 Basecbs 17215 Catccat 17663 Idccid 17664 Sectcsect 17744 Invcinv 17745 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-1st 7983 df-2nd 7984 df-cat 17667 df-cid 17668 df-sect 17747 df-inv 17748 |
| This theorem is referenced by: idiso 17788 idinv 17789 |
| Copyright terms: Public domain | W3C validator |