![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sectid | Structured version Visualization version GIF version |
Description: The identity is a section of itself. (Contributed by AV, 8-Apr-2020.) |
Ref | Expression |
---|---|
invid.b | ⊢ 𝐵 = (Base‘𝐶) |
invid.i | ⊢ 𝐼 = (Id‘𝐶) |
invid.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
invid.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
sectid | ⊢ (𝜑 → (𝐼‘𝑋)(𝑋(Sect‘𝐶)𝑋)(𝐼‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invid.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
2 | eqid 2730 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
3 | invid.i | . . 3 ⊢ 𝐼 = (Id‘𝐶) | |
4 | invid.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | invid.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | eqid 2730 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
7 | 1, 2, 3, 4, 5 | catidcl 17632 | . . 3 ⊢ (𝜑 → (𝐼‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋)) |
8 | 1, 2, 3, 4, 5, 6, 5, 7 | catlid 17633 | . 2 ⊢ (𝜑 → ((𝐼‘𝑋)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)(𝐼‘𝑋)) = (𝐼‘𝑋)) |
9 | eqid 2730 | . . 3 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
10 | 1, 2, 6, 3, 9, 4, 5, 5, 7, 7 | issect2 17707 | . 2 ⊢ (𝜑 → ((𝐼‘𝑋)(𝑋(Sect‘𝐶)𝑋)(𝐼‘𝑋) ↔ ((𝐼‘𝑋)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)(𝐼‘𝑋)) = (𝐼‘𝑋))) |
11 | 8, 10 | mpbird 256 | 1 ⊢ (𝜑 → (𝐼‘𝑋)(𝑋(Sect‘𝐶)𝑋)(𝐼‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ⟨cop 4635 class class class wbr 5149 ‘cfv 6544 (class class class)co 7413 Basecbs 17150 Hom chom 17214 compcco 17215 Catccat 17614 Idccid 17615 Sectcsect 17697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7979 df-2nd 7980 df-cat 17618 df-cid 17619 df-sect 17700 |
This theorem is referenced by: invid 17740 |
Copyright terms: Public domain | W3C validator |