Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sectid | Structured version Visualization version GIF version |
Description: The identity is a section of itself. (Contributed by AV, 8-Apr-2020.) |
Ref | Expression |
---|---|
invid.b | ⊢ 𝐵 = (Base‘𝐶) |
invid.i | ⊢ 𝐼 = (Id‘𝐶) |
invid.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
invid.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
sectid | ⊢ (𝜑 → (𝐼‘𝑋)(𝑋(Sect‘𝐶)𝑋)(𝐼‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invid.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
2 | eqid 2738 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
3 | invid.i | . . 3 ⊢ 𝐼 = (Id‘𝐶) | |
4 | invid.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | invid.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | eqid 2738 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
7 | 1, 2, 3, 4, 5 | catidcl 17308 | . . 3 ⊢ (𝜑 → (𝐼‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋)) |
8 | 1, 2, 3, 4, 5, 6, 5, 7 | catlid 17309 | . 2 ⊢ (𝜑 → ((𝐼‘𝑋)(〈𝑋, 𝑋〉(comp‘𝐶)𝑋)(𝐼‘𝑋)) = (𝐼‘𝑋)) |
9 | eqid 2738 | . . 3 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
10 | 1, 2, 6, 3, 9, 4, 5, 5, 7, 7 | issect2 17383 | . 2 ⊢ (𝜑 → ((𝐼‘𝑋)(𝑋(Sect‘𝐶)𝑋)(𝐼‘𝑋) ↔ ((𝐼‘𝑋)(〈𝑋, 𝑋〉(comp‘𝐶)𝑋)(𝐼‘𝑋)) = (𝐼‘𝑋))) |
11 | 8, 10 | mpbird 256 | 1 ⊢ (𝜑 → (𝐼‘𝑋)(𝑋(Sect‘𝐶)𝑋)(𝐼‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 〈cop 4564 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 Hom chom 16899 compcco 16900 Catccat 17290 Idccid 17291 Sectcsect 17373 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-cat 17294 df-cid 17295 df-sect 17376 |
This theorem is referenced by: invid 17416 |
Copyright terms: Public domain | W3C validator |