MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sectid Structured version   Visualization version   GIF version

Theorem sectid 17769
Description: The identity is a section of itself. (Contributed by AV, 8-Apr-2020.)
Hypotheses
Ref Expression
invid.b 𝐵 = (Base‘𝐶)
invid.i 𝐼 = (Id‘𝐶)
invid.c (𝜑𝐶 ∈ Cat)
invid.x (𝜑𝑋𝐵)
Assertion
Ref Expression
sectid (𝜑 → (𝐼𝑋)(𝑋(Sect‘𝐶)𝑋)(𝐼𝑋))

Proof of Theorem sectid
StepHypRef Expression
1 invid.b . . 3 𝐵 = (Base‘𝐶)
2 eqid 2728 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
3 invid.i . . 3 𝐼 = (Id‘𝐶)
4 invid.c . . 3 (𝜑𝐶 ∈ Cat)
5 invid.x . . 3 (𝜑𝑋𝐵)
6 eqid 2728 . . 3 (comp‘𝐶) = (comp‘𝐶)
71, 2, 3, 4, 5catidcl 17662 . . 3 (𝜑 → (𝐼𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
81, 2, 3, 4, 5, 6, 5, 7catlid 17663 . 2 (𝜑 → ((𝐼𝑋)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)(𝐼𝑋)) = (𝐼𝑋))
9 eqid 2728 . . 3 (Sect‘𝐶) = (Sect‘𝐶)
101, 2, 6, 3, 9, 4, 5, 5, 7, 7issect2 17737 . 2 (𝜑 → ((𝐼𝑋)(𝑋(Sect‘𝐶)𝑋)(𝐼𝑋) ↔ ((𝐼𝑋)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)(𝐼𝑋)) = (𝐼𝑋)))
118, 10mpbird 257 1 (𝜑 → (𝐼𝑋)(𝑋(Sect‘𝐶)𝑋)(𝐼𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  cop 4635   class class class wbr 5148  cfv 6548  (class class class)co 7420  Basecbs 17180  Hom chom 17244  compcco 17245  Catccat 17644  Idccid 17645  Sectcsect 17727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-1st 7993  df-2nd 7994  df-cat 17648  df-cid 17649  df-sect 17730
This theorem is referenced by:  invid  17770
  Copyright terms: Public domain W3C validator