MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sectid Structured version   Visualization version   GIF version

Theorem sectid 17316
Description: The identity is a section of itself. (Contributed by AV, 8-Apr-2020.)
Hypotheses
Ref Expression
invid.b 𝐵 = (Base‘𝐶)
invid.i 𝐼 = (Id‘𝐶)
invid.c (𝜑𝐶 ∈ Cat)
invid.x (𝜑𝑋𝐵)
Assertion
Ref Expression
sectid (𝜑 → (𝐼𝑋)(𝑋(Sect‘𝐶)𝑋)(𝐼𝑋))

Proof of Theorem sectid
StepHypRef Expression
1 invid.b . . 3 𝐵 = (Base‘𝐶)
2 eqid 2738 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
3 invid.i . . 3 𝐼 = (Id‘𝐶)
4 invid.c . . 3 (𝜑𝐶 ∈ Cat)
5 invid.x . . 3 (𝜑𝑋𝐵)
6 eqid 2738 . . 3 (comp‘𝐶) = (comp‘𝐶)
71, 2, 3, 4, 5catidcl 17210 . . 3 (𝜑 → (𝐼𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
81, 2, 3, 4, 5, 6, 5, 7catlid 17211 . 2 (𝜑 → ((𝐼𝑋)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)(𝐼𝑋)) = (𝐼𝑋))
9 eqid 2738 . . 3 (Sect‘𝐶) = (Sect‘𝐶)
101, 2, 6, 3, 9, 4, 5, 5, 7, 7issect2 17284 . 2 (𝜑 → ((𝐼𝑋)(𝑋(Sect‘𝐶)𝑋)(𝐼𝑋) ↔ ((𝐼𝑋)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)(𝐼𝑋)) = (𝐼𝑋)))
118, 10mpbird 260 1 (𝜑 → (𝐼𝑋)(𝑋(Sect‘𝐶)𝑋)(𝐼𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2111  cop 4562   class class class wbr 5068  cfv 6398  (class class class)co 7232  Basecbs 16785  Hom chom 16838  compcco 16839  Catccat 17192  Idccid 17193  Sectcsect 17274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5194  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-op 4563  df-uni 4835  df-iun 4921  df-br 5069  df-opab 5131  df-mpt 5151  df-id 5470  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-riota 7189  df-ov 7235  df-oprab 7236  df-mpo 7237  df-1st 7780  df-2nd 7781  df-cat 17196  df-cid 17197  df-sect 17277
This theorem is referenced by:  invid  17317
  Copyright terms: Public domain W3C validator