MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idiso Structured version   Visualization version   GIF version

Theorem idiso 17687
Description: The identity is an isomorphism. Example 3.13 of [Adamek] p. 28. (Contributed by AV, 8-Apr-2020.)
Hypotheses
Ref Expression
invid.b 𝐵 = (Base‘𝐶)
invid.i 𝐼 = (Id‘𝐶)
invid.c (𝜑𝐶 ∈ Cat)
invid.x (𝜑𝑋𝐵)
Assertion
Ref Expression
idiso (𝜑 → (𝐼𝑋) ∈ (𝑋(Iso‘𝐶)𝑋))

Proof of Theorem idiso
StepHypRef Expression
1 invid.b . 2 𝐵 = (Base‘𝐶)
2 eqid 2730 . 2 (Inv‘𝐶) = (Inv‘𝐶)
3 invid.c . 2 (𝜑𝐶 ∈ Cat)
4 invid.x . 2 (𝜑𝑋𝐵)
5 eqid 2730 . 2 (Iso‘𝐶) = (Iso‘𝐶)
6 invid.i . . 3 𝐼 = (Id‘𝐶)
71, 6, 3, 4invid 17686 . 2 (𝜑 → (𝐼𝑋)(𝑋(Inv‘𝐶)𝑋)(𝐼𝑋))
81, 2, 3, 4, 4, 5, 7inviso1 17665 1 (𝜑 → (𝐼𝑋) ∈ (𝑋(Iso‘𝐶)𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2110  cfv 6477  (class class class)co 7341  Basecbs 17112  Catccat 17562  Idccid 17563  Invcinv 17644  Isociso 17645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-cat 17566  df-cid 17567  df-sect 17646  df-inv 17647  df-iso 17648
This theorem is referenced by:  invisoinvl  17689  cicref  17700
  Copyright terms: Public domain W3C validator