MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idiso Structured version   Visualization version   GIF version

Theorem idiso 17756
Description: The identity is an isomorphism. Example 3.13 of [Adamek] p. 28. (Contributed by AV, 8-Apr-2020.)
Hypotheses
Ref Expression
invid.b 𝐵 = (Base‘𝐶)
invid.i 𝐼 = (Id‘𝐶)
invid.c (𝜑𝐶 ∈ Cat)
invid.x (𝜑𝑋𝐵)
Assertion
Ref Expression
idiso (𝜑 → (𝐼𝑋) ∈ (𝑋(Iso‘𝐶)𝑋))

Proof of Theorem idiso
StepHypRef Expression
1 invid.b . 2 𝐵 = (Base‘𝐶)
2 eqid 2730 . 2 (Inv‘𝐶) = (Inv‘𝐶)
3 invid.c . 2 (𝜑𝐶 ∈ Cat)
4 invid.x . 2 (𝜑𝑋𝐵)
5 eqid 2730 . 2 (Iso‘𝐶) = (Iso‘𝐶)
6 invid.i . . 3 𝐼 = (Id‘𝐶)
71, 6, 3, 4invid 17755 . 2 (𝜑 → (𝐼𝑋)(𝑋(Inv‘𝐶)𝑋)(𝐼𝑋))
81, 2, 3, 4, 4, 5, 7inviso1 17734 1 (𝜑 → (𝐼𝑋) ∈ (𝑋(Iso‘𝐶)𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6519  (class class class)co 7394  Basecbs 17185  Catccat 17631  Idccid 17632  Invcinv 17713  Isociso 17714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-cat 17635  df-cid 17636  df-sect 17715  df-inv 17716  df-iso 17717
This theorem is referenced by:  invisoinvl  17758  cicref  17769
  Copyright terms: Public domain W3C validator