MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idinv Structured version   Visualization version   GIF version

Theorem idinv 17809
Description: The inverse of the identity is the identity. Example 3.13 of [Adamek] p. 28. (Contributed by AV, 9-Apr-2020.)
Hypotheses
Ref Expression
invid.b 𝐵 = (Base‘𝐶)
invid.i 𝐼 = (Id‘𝐶)
invid.c (𝜑𝐶 ∈ Cat)
invid.x (𝜑𝑋𝐵)
Assertion
Ref Expression
idinv (𝜑 → ((𝑋(Inv‘𝐶)𝑋)‘(𝐼𝑋)) = (𝐼𝑋))

Proof of Theorem idinv
StepHypRef Expression
1 invid.b . . 3 𝐵 = (Base‘𝐶)
2 eqid 2734 . . 3 (Inv‘𝐶) = (Inv‘𝐶)
3 invid.c . . 3 (𝜑𝐶 ∈ Cat)
4 invid.x . . 3 (𝜑𝑋𝐵)
51, 2, 3, 4, 4invfun 17784 . 2 (𝜑 → Fun (𝑋(Inv‘𝐶)𝑋))
6 invid.i . . 3 𝐼 = (Id‘𝐶)
71, 6, 3, 4invid 17807 . 2 (𝜑 → (𝐼𝑋)(𝑋(Inv‘𝐶)𝑋)(𝐼𝑋))
8 funbrfv 6938 . 2 (Fun (𝑋(Inv‘𝐶)𝑋) → ((𝐼𝑋)(𝑋(Inv‘𝐶)𝑋)(𝐼𝑋) → ((𝑋(Inv‘𝐶)𝑋)‘(𝐼𝑋)) = (𝐼𝑋)))
95, 7, 8sylc 65 1 (𝜑 → ((𝑋(Inv‘𝐶)𝑋)‘(𝐼𝑋)) = (𝐼𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107   class class class wbr 5125  Fun wfun 6536  cfv 6542  (class class class)co 7414  Basecbs 17230  Catccat 17683  Idccid 17684  Invcinv 17765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7997  df-2nd 7998  df-cat 17687  df-cid 17688  df-sect 17767  df-inv 17768
This theorem is referenced by:  invisoinvl  17810
  Copyright terms: Public domain W3C validator