Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > idinv | Structured version Visualization version GIF version |
Description: The inverse of the identity is the identity. Example 3.13 of [Adamek] p. 28. (Contributed by AV, 9-Apr-2020.) |
Ref | Expression |
---|---|
invid.b | ⊢ 𝐵 = (Base‘𝐶) |
invid.i | ⊢ 𝐼 = (Id‘𝐶) |
invid.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
invid.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
idinv | ⊢ (𝜑 → ((𝑋(Inv‘𝐶)𝑋)‘(𝐼‘𝑋)) = (𝐼‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invid.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
2 | eqid 2738 | . . 3 ⊢ (Inv‘𝐶) = (Inv‘𝐶) | |
3 | invid.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | invid.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | 1, 2, 3, 4, 4 | invfun 17465 | . 2 ⊢ (𝜑 → Fun (𝑋(Inv‘𝐶)𝑋)) |
6 | invid.i | . . 3 ⊢ 𝐼 = (Id‘𝐶) | |
7 | 1, 6, 3, 4 | invid 17488 | . 2 ⊢ (𝜑 → (𝐼‘𝑋)(𝑋(Inv‘𝐶)𝑋)(𝐼‘𝑋)) |
8 | funbrfv 6814 | . 2 ⊢ (Fun (𝑋(Inv‘𝐶)𝑋) → ((𝐼‘𝑋)(𝑋(Inv‘𝐶)𝑋)(𝐼‘𝑋) → ((𝑋(Inv‘𝐶)𝑋)‘(𝐼‘𝑋)) = (𝐼‘𝑋))) | |
9 | 5, 7, 8 | sylc 65 | 1 ⊢ (𝜑 → ((𝑋(Inv‘𝐶)𝑋)‘(𝐼‘𝑋)) = (𝐼‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 class class class wbr 5075 Fun wfun 6422 ‘cfv 6428 (class class class)co 7269 Basecbs 16901 Catccat 17362 Idccid 17363 Invcinv 17446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5210 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-iun 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5486 df-xp 5592 df-rel 5593 df-cnv 5594 df-co 5595 df-dm 5596 df-rn 5597 df-res 5598 df-ima 5599 df-iota 6386 df-fun 6430 df-fn 6431 df-f 6432 df-f1 6433 df-fo 6434 df-f1o 6435 df-fv 6436 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-1st 7822 df-2nd 7823 df-cat 17366 df-cid 17367 df-sect 17448 df-inv 17449 |
This theorem is referenced by: invisoinvl 17491 |
Copyright terms: Public domain | W3C validator |