![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idinv | Structured version Visualization version GIF version |
Description: The inverse of the identity is the identity. Example 3.13 of [Adamek] p. 28. (Contributed by AV, 9-Apr-2020.) |
Ref | Expression |
---|---|
invid.b | β’ π΅ = (BaseβπΆ) |
invid.i | β’ πΌ = (IdβπΆ) |
invid.c | β’ (π β πΆ β Cat) |
invid.x | β’ (π β π β π΅) |
Ref | Expression |
---|---|
idinv | β’ (π β ((π(InvβπΆ)π)β(πΌβπ)) = (πΌβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invid.b | . . 3 β’ π΅ = (BaseβπΆ) | |
2 | eqid 2730 | . . 3 β’ (InvβπΆ) = (InvβπΆ) | |
3 | invid.c | . . 3 β’ (π β πΆ β Cat) | |
4 | invid.x | . . 3 β’ (π β π β π΅) | |
5 | 1, 2, 3, 4, 4 | invfun 17715 | . 2 β’ (π β Fun (π(InvβπΆ)π)) |
6 | invid.i | . . 3 β’ πΌ = (IdβπΆ) | |
7 | 1, 6, 3, 4 | invid 17738 | . 2 β’ (π β (πΌβπ)(π(InvβπΆ)π)(πΌβπ)) |
8 | funbrfv 6941 | . 2 β’ (Fun (π(InvβπΆ)π) β ((πΌβπ)(π(InvβπΆ)π)(πΌβπ) β ((π(InvβπΆ)π)β(πΌβπ)) = (πΌβπ))) | |
9 | 5, 7, 8 | sylc 65 | 1 β’ (π β ((π(InvβπΆ)π)β(πΌβπ)) = (πΌβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1539 β wcel 2104 class class class wbr 5147 Fun wfun 6536 βcfv 6542 (class class class)co 7411 Basecbs 17148 Catccat 17612 Idccid 17613 Invcinv 17696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-cat 17616 df-cid 17617 df-sect 17698 df-inv 17699 |
This theorem is referenced by: invisoinvl 17741 |
Copyright terms: Public domain | W3C validator |