Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isohom | Structured version Visualization version GIF version |
Description: An isomorphism is a homomorphism. (Contributed by Mario Carneiro, 27-Jan-2017.) |
Ref | Expression |
---|---|
isohom.b | ⊢ 𝐵 = (Base‘𝐶) |
isohom.h | ⊢ 𝐻 = (Hom ‘𝐶) |
isohom.i | ⊢ 𝐼 = (Iso‘𝐶) |
isohom.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
isohom.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
isohom.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
isohom | ⊢ (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋𝐻𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isohom.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
2 | eqid 2738 | . . . 4 ⊢ (Inv‘𝐶) = (Inv‘𝐶) | |
3 | isohom.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | isohom.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | isohom.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | isohom.i | . . . 4 ⊢ 𝐼 = (Iso‘𝐶) | |
7 | 1, 2, 3, 4, 5, 6 | isoval 17477 | . . 3 ⊢ (𝜑 → (𝑋𝐼𝑌) = dom (𝑋(Inv‘𝐶)𝑌)) |
8 | isohom.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
9 | 1, 2, 3, 4, 5, 8 | invss 17473 | . . . 4 ⊢ (𝜑 → (𝑋(Inv‘𝐶)𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))) |
10 | dmss 5811 | . . . 4 ⊢ ((𝑋(Inv‘𝐶)𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)) → dom (𝑋(Inv‘𝐶)𝑌) ⊆ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → dom (𝑋(Inv‘𝐶)𝑌) ⊆ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))) |
12 | 7, 11 | eqsstrd 3959 | . 2 ⊢ (𝜑 → (𝑋𝐼𝑌) ⊆ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))) |
13 | dmxpss 6074 | . 2 ⊢ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)) ⊆ (𝑋𝐻𝑌) | |
14 | 12, 13 | sstrdi 3933 | 1 ⊢ (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋𝐻𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 × cxp 5587 dom cdm 5589 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 Hom chom 16973 Catccat 17373 Invcinv 17457 Isociso 17458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-sect 17459 df-inv 17460 df-iso 17461 |
This theorem is referenced by: invisoinvl 17502 invcoisoid 17504 isocoinvid 17505 rcaninv 17506 ffthiso 17645 fuciso 17693 initoeu1 17726 initoeu2lem0 17728 initoeu2lem1 17729 initoeu2 17731 termoeu1 17733 nzerooringczr 45630 thinccic 46342 |
Copyright terms: Public domain | W3C validator |