MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isohom Structured version   Visualization version   GIF version

Theorem isohom 17718
Description: An isomorphism is a homomorphism. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
isohom.b 𝐵 = (Base‘𝐶)
isohom.h 𝐻 = (Hom ‘𝐶)
isohom.i 𝐼 = (Iso‘𝐶)
isohom.c (𝜑𝐶 ∈ Cat)
isohom.x (𝜑𝑋𝐵)
isohom.y (𝜑𝑌𝐵)
Assertion
Ref Expression
isohom (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋𝐻𝑌))

Proof of Theorem isohom
StepHypRef Expression
1 isohom.b . . . 4 𝐵 = (Base‘𝐶)
2 eqid 2729 . . . 4 (Inv‘𝐶) = (Inv‘𝐶)
3 isohom.c . . . 4 (𝜑𝐶 ∈ Cat)
4 isohom.x . . . 4 (𝜑𝑋𝐵)
5 isohom.y . . . 4 (𝜑𝑌𝐵)
6 isohom.i . . . 4 𝐼 = (Iso‘𝐶)
71, 2, 3, 4, 5, 6isoval 17707 . . 3 (𝜑 → (𝑋𝐼𝑌) = dom (𝑋(Inv‘𝐶)𝑌))
8 isohom.h . . . . 5 𝐻 = (Hom ‘𝐶)
91, 2, 3, 4, 5, 8invss 17703 . . . 4 (𝜑 → (𝑋(Inv‘𝐶)𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)))
10 dmss 5856 . . . 4 ((𝑋(Inv‘𝐶)𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)) → dom (𝑋(Inv‘𝐶)𝑌) ⊆ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)))
119, 10syl 17 . . 3 (𝜑 → dom (𝑋(Inv‘𝐶)𝑌) ⊆ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)))
127, 11eqsstrd 3978 . 2 (𝜑 → (𝑋𝐼𝑌) ⊆ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)))
13 dmxpss 6132 . 2 dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)) ⊆ (𝑋𝐻𝑌)
1412, 13sstrdi 3956 1 (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋𝐻𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3911   × cxp 5629  dom cdm 5631  cfv 6499  (class class class)co 7369  Basecbs 17155  Hom chom 17207  Catccat 17605  Invcinv 17687  Isociso 17688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-sect 17689  df-inv 17690  df-iso 17691
This theorem is referenced by:  invisoinvl  17732  invcoisoid  17734  isocoinvid  17735  rcaninv  17736  ffthiso  17873  fuciso  17920  initoeu1  17953  initoeu2lem0  17955  initoeu2lem1  17956  initoeu2  17958  termoeu1  17960  nzerooringczr  21422  upeu2lem  49010  upeu  49153  upeu2  49154  thinccic  49453
  Copyright terms: Public domain W3C validator