![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isohom | Structured version Visualization version GIF version |
Description: An isomorphism is a homomorphism. (Contributed by Mario Carneiro, 27-Jan-2017.) |
Ref | Expression |
---|---|
isohom.b | β’ π΅ = (BaseβπΆ) |
isohom.h | β’ π» = (Hom βπΆ) |
isohom.i | β’ πΌ = (IsoβπΆ) |
isohom.c | β’ (π β πΆ β Cat) |
isohom.x | β’ (π β π β π΅) |
isohom.y | β’ (π β π β π΅) |
Ref | Expression |
---|---|
isohom | β’ (π β (ππΌπ) β (ππ»π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isohom.b | . . . 4 β’ π΅ = (BaseβπΆ) | |
2 | eqid 2731 | . . . 4 β’ (InvβπΆ) = (InvβπΆ) | |
3 | isohom.c | . . . 4 β’ (π β πΆ β Cat) | |
4 | isohom.x | . . . 4 β’ (π β π β π΅) | |
5 | isohom.y | . . . 4 β’ (π β π β π΅) | |
6 | isohom.i | . . . 4 β’ πΌ = (IsoβπΆ) | |
7 | 1, 2, 3, 4, 5, 6 | isoval 17719 | . . 3 β’ (π β (ππΌπ) = dom (π(InvβπΆ)π)) |
8 | isohom.h | . . . . 5 β’ π» = (Hom βπΆ) | |
9 | 1, 2, 3, 4, 5, 8 | invss 17715 | . . . 4 β’ (π β (π(InvβπΆ)π) β ((ππ»π) Γ (ππ»π))) |
10 | dmss 5902 | . . . 4 β’ ((π(InvβπΆ)π) β ((ππ»π) Γ (ππ»π)) β dom (π(InvβπΆ)π) β dom ((ππ»π) Γ (ππ»π))) | |
11 | 9, 10 | syl 17 | . . 3 β’ (π β dom (π(InvβπΆ)π) β dom ((ππ»π) Γ (ππ»π))) |
12 | 7, 11 | eqsstrd 4020 | . 2 β’ (π β (ππΌπ) β dom ((ππ»π) Γ (ππ»π))) |
13 | dmxpss 6170 | . 2 β’ dom ((ππ»π) Γ (ππ»π)) β (ππ»π) | |
14 | 12, 13 | sstrdi 3994 | 1 β’ (π β (ππΌπ) β (ππ»π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 β wss 3948 Γ cxp 5674 dom cdm 5676 βcfv 6543 (class class class)co 7412 Basecbs 17151 Hom chom 17215 Catccat 17615 Invcinv 17699 Isociso 17700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-sect 17701 df-inv 17702 df-iso 17703 |
This theorem is referenced by: invisoinvl 17744 invcoisoid 17746 isocoinvid 17747 rcaninv 17748 ffthiso 17889 fuciso 17938 initoeu1 17971 initoeu2lem0 17973 initoeu2lem1 17974 initoeu2 17976 termoeu1 17978 nzerooringczr 21340 thinccic 47843 |
Copyright terms: Public domain | W3C validator |