MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isohom Structured version   Visualization version   GIF version

Theorem isohom 17837
Description: An isomorphism is a homomorphism. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
isohom.b 𝐵 = (Base‘𝐶)
isohom.h 𝐻 = (Hom ‘𝐶)
isohom.i 𝐼 = (Iso‘𝐶)
isohom.c (𝜑𝐶 ∈ Cat)
isohom.x (𝜑𝑋𝐵)
isohom.y (𝜑𝑌𝐵)
Assertion
Ref Expression
isohom (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋𝐻𝑌))

Proof of Theorem isohom
StepHypRef Expression
1 isohom.b . . . 4 𝐵 = (Base‘𝐶)
2 eqid 2740 . . . 4 (Inv‘𝐶) = (Inv‘𝐶)
3 isohom.c . . . 4 (𝜑𝐶 ∈ Cat)
4 isohom.x . . . 4 (𝜑𝑋𝐵)
5 isohom.y . . . 4 (𝜑𝑌𝐵)
6 isohom.i . . . 4 𝐼 = (Iso‘𝐶)
71, 2, 3, 4, 5, 6isoval 17826 . . 3 (𝜑 → (𝑋𝐼𝑌) = dom (𝑋(Inv‘𝐶)𝑌))
8 isohom.h . . . . 5 𝐻 = (Hom ‘𝐶)
91, 2, 3, 4, 5, 8invss 17822 . . . 4 (𝜑 → (𝑋(Inv‘𝐶)𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)))
10 dmss 5927 . . . 4 ((𝑋(Inv‘𝐶)𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)) → dom (𝑋(Inv‘𝐶)𝑌) ⊆ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)))
119, 10syl 17 . . 3 (𝜑 → dom (𝑋(Inv‘𝐶)𝑌) ⊆ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)))
127, 11eqsstrd 4047 . 2 (𝜑 → (𝑋𝐼𝑌) ⊆ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)))
13 dmxpss 6202 . 2 dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)) ⊆ (𝑋𝐻𝑌)
1412, 13sstrdi 4021 1 (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋𝐻𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wss 3976   × cxp 5698  dom cdm 5700  cfv 6573  (class class class)co 7448  Basecbs 17258  Hom chom 17322  Catccat 17722  Invcinv 17806  Isociso 17807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-sect 17808  df-inv 17809  df-iso 17810
This theorem is referenced by:  invisoinvl  17851  invcoisoid  17853  isocoinvid  17854  rcaninv  17855  ffthiso  17996  fuciso  18045  initoeu1  18078  initoeu2lem0  18080  initoeu2lem1  18081  initoeu2  18083  termoeu1  18085  nzerooringczr  21514  thinccic  48728
  Copyright terms: Public domain W3C validator