Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isohom | Structured version Visualization version GIF version |
Description: An isomorphism is a homomorphism. (Contributed by Mario Carneiro, 27-Jan-2017.) |
Ref | Expression |
---|---|
isohom.b | ⊢ 𝐵 = (Base‘𝐶) |
isohom.h | ⊢ 𝐻 = (Hom ‘𝐶) |
isohom.i | ⊢ 𝐼 = (Iso‘𝐶) |
isohom.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
isohom.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
isohom.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
isohom | ⊢ (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋𝐻𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isohom.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
2 | eqid 2740 | . . . 4 ⊢ (Inv‘𝐶) = (Inv‘𝐶) | |
3 | isohom.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | isohom.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | isohom.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | isohom.i | . . . 4 ⊢ 𝐼 = (Iso‘𝐶) | |
7 | 1, 2, 3, 4, 5, 6 | isoval 17473 | . . 3 ⊢ (𝜑 → (𝑋𝐼𝑌) = dom (𝑋(Inv‘𝐶)𝑌)) |
8 | isohom.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
9 | 1, 2, 3, 4, 5, 8 | invss 17469 | . . . 4 ⊢ (𝜑 → (𝑋(Inv‘𝐶)𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))) |
10 | dmss 5809 | . . . 4 ⊢ ((𝑋(Inv‘𝐶)𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)) → dom (𝑋(Inv‘𝐶)𝑌) ⊆ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → dom (𝑋(Inv‘𝐶)𝑌) ⊆ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))) |
12 | 7, 11 | eqsstrd 3964 | . 2 ⊢ (𝜑 → (𝑋𝐼𝑌) ⊆ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))) |
13 | dmxpss 6072 | . 2 ⊢ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)) ⊆ (𝑋𝐻𝑌) | |
14 | 12, 13 | sstrdi 3938 | 1 ⊢ (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋𝐻𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ⊆ wss 3892 × cxp 5587 dom cdm 5589 ‘cfv 6431 (class class class)co 7269 Basecbs 16908 Hom chom 16969 Catccat 17369 Invcinv 17453 Isociso 17454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-ov 7272 df-oprab 7273 df-mpo 7274 df-1st 7822 df-2nd 7823 df-sect 17455 df-inv 17456 df-iso 17457 |
This theorem is referenced by: invisoinvl 17498 invcoisoid 17500 isocoinvid 17501 rcaninv 17502 ffthiso 17641 fuciso 17689 initoeu1 17722 initoeu2lem0 17724 initoeu2lem1 17725 initoeu2 17727 termoeu1 17729 nzerooringczr 45597 thinccic 46309 |
Copyright terms: Public domain | W3C validator |