| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isohom | Structured version Visualization version GIF version | ||
| Description: An isomorphism is a homomorphism. (Contributed by Mario Carneiro, 27-Jan-2017.) |
| Ref | Expression |
|---|---|
| isohom.b | ⊢ 𝐵 = (Base‘𝐶) |
| isohom.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| isohom.i | ⊢ 𝐼 = (Iso‘𝐶) |
| isohom.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| isohom.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| isohom.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| isohom | ⊢ (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋𝐻𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isohom.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | eqid 2729 | . . . 4 ⊢ (Inv‘𝐶) = (Inv‘𝐶) | |
| 3 | isohom.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | isohom.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | isohom.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | isohom.i | . . . 4 ⊢ 𝐼 = (Iso‘𝐶) | |
| 7 | 1, 2, 3, 4, 5, 6 | isoval 17672 | . . 3 ⊢ (𝜑 → (𝑋𝐼𝑌) = dom (𝑋(Inv‘𝐶)𝑌)) |
| 8 | isohom.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 9 | 1, 2, 3, 4, 5, 8 | invss 17668 | . . . 4 ⊢ (𝜑 → (𝑋(Inv‘𝐶)𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))) |
| 10 | dmss 5845 | . . . 4 ⊢ ((𝑋(Inv‘𝐶)𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)) → dom (𝑋(Inv‘𝐶)𝑌) ⊆ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → dom (𝑋(Inv‘𝐶)𝑌) ⊆ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))) |
| 12 | 7, 11 | eqsstrd 3970 | . 2 ⊢ (𝜑 → (𝑋𝐼𝑌) ⊆ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))) |
| 13 | dmxpss 6120 | . 2 ⊢ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)) ⊆ (𝑋𝐻𝑌) | |
| 14 | 12, 13 | sstrdi 3948 | 1 ⊢ (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋𝐻𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 × cxp 5617 dom cdm 5619 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 Hom chom 17172 Catccat 17570 Invcinv 17652 Isociso 17653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-sect 17654 df-inv 17655 df-iso 17656 |
| This theorem is referenced by: invisoinvl 17697 invcoisoid 17699 isocoinvid 17700 rcaninv 17701 ffthiso 17838 fuciso 17885 initoeu1 17918 initoeu2lem0 17920 initoeu2lem1 17921 initoeu2 17923 termoeu1 17925 nzerooringczr 21387 upeu2lem 49023 upeu 49166 upeu2 49167 thinccic 49466 |
| Copyright terms: Public domain | W3C validator |