![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isohom | Structured version Visualization version GIF version |
Description: An isomorphism is a homomorphism. (Contributed by Mario Carneiro, 27-Jan-2017.) |
Ref | Expression |
---|---|
isohom.b | β’ π΅ = (BaseβπΆ) |
isohom.h | β’ π» = (Hom βπΆ) |
isohom.i | β’ πΌ = (IsoβπΆ) |
isohom.c | β’ (π β πΆ β Cat) |
isohom.x | β’ (π β π β π΅) |
isohom.y | β’ (π β π β π΅) |
Ref | Expression |
---|---|
isohom | β’ (π β (ππΌπ) β (ππ»π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isohom.b | . . . 4 β’ π΅ = (BaseβπΆ) | |
2 | eqid 2732 | . . . 4 β’ (InvβπΆ) = (InvβπΆ) | |
3 | isohom.c | . . . 4 β’ (π β πΆ β Cat) | |
4 | isohom.x | . . . 4 β’ (π β π β π΅) | |
5 | isohom.y | . . . 4 β’ (π β π β π΅) | |
6 | isohom.i | . . . 4 β’ πΌ = (IsoβπΆ) | |
7 | 1, 2, 3, 4, 5, 6 | isoval 17708 | . . 3 β’ (π β (ππΌπ) = dom (π(InvβπΆ)π)) |
8 | isohom.h | . . . . 5 β’ π» = (Hom βπΆ) | |
9 | 1, 2, 3, 4, 5, 8 | invss 17704 | . . . 4 β’ (π β (π(InvβπΆ)π) β ((ππ»π) Γ (ππ»π))) |
10 | dmss 5900 | . . . 4 β’ ((π(InvβπΆ)π) β ((ππ»π) Γ (ππ»π)) β dom (π(InvβπΆ)π) β dom ((ππ»π) Γ (ππ»π))) | |
11 | 9, 10 | syl 17 | . . 3 β’ (π β dom (π(InvβπΆ)π) β dom ((ππ»π) Γ (ππ»π))) |
12 | 7, 11 | eqsstrd 4019 | . 2 β’ (π β (ππΌπ) β dom ((ππ»π) Γ (ππ»π))) |
13 | dmxpss 6167 | . 2 β’ dom ((ππ»π) Γ (ππ»π)) β (ππ»π) | |
14 | 12, 13 | sstrdi 3993 | 1 β’ (π β (ππΌπ) β (ππ»π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 β wss 3947 Γ cxp 5673 dom cdm 5675 βcfv 6540 (class class class)co 7405 Basecbs 17140 Hom chom 17204 Catccat 17604 Invcinv 17688 Isociso 17689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-sect 17690 df-inv 17691 df-iso 17692 |
This theorem is referenced by: invisoinvl 17733 invcoisoid 17735 isocoinvid 17736 rcaninv 17737 ffthiso 17876 fuciso 17924 initoeu1 17957 initoeu2lem0 17959 initoeu2lem1 17960 initoeu2 17962 termoeu1 17964 nzerooringczr 46923 thinccic 47634 |
Copyright terms: Public domain | W3C validator |