| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isohom | Structured version Visualization version GIF version | ||
| Description: An isomorphism is a homomorphism. (Contributed by Mario Carneiro, 27-Jan-2017.) |
| Ref | Expression |
|---|---|
| isohom.b | ⊢ 𝐵 = (Base‘𝐶) |
| isohom.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| isohom.i | ⊢ 𝐼 = (Iso‘𝐶) |
| isohom.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| isohom.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| isohom.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| isohom | ⊢ (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋𝐻𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isohom.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | eqid 2731 | . . . 4 ⊢ (Inv‘𝐶) = (Inv‘𝐶) | |
| 3 | isohom.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | isohom.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | isohom.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | isohom.i | . . . 4 ⊢ 𝐼 = (Iso‘𝐶) | |
| 7 | 1, 2, 3, 4, 5, 6 | isoval 17672 | . . 3 ⊢ (𝜑 → (𝑋𝐼𝑌) = dom (𝑋(Inv‘𝐶)𝑌)) |
| 8 | isohom.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 9 | 1, 2, 3, 4, 5, 8 | invss 17668 | . . . 4 ⊢ (𝜑 → (𝑋(Inv‘𝐶)𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))) |
| 10 | dmss 5841 | . . . 4 ⊢ ((𝑋(Inv‘𝐶)𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)) → dom (𝑋(Inv‘𝐶)𝑌) ⊆ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → dom (𝑋(Inv‘𝐶)𝑌) ⊆ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))) |
| 12 | 7, 11 | eqsstrd 3964 | . 2 ⊢ (𝜑 → (𝑋𝐼𝑌) ⊆ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))) |
| 13 | dmxpss 6118 | . 2 ⊢ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)) ⊆ (𝑋𝐻𝑌) | |
| 14 | 12, 13 | sstrdi 3942 | 1 ⊢ (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋𝐻𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 × cxp 5612 dom cdm 5614 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 Hom chom 17172 Catccat 17570 Invcinv 17652 Isociso 17653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-sect 17654 df-inv 17655 df-iso 17656 |
| This theorem is referenced by: invisoinvl 17697 invcoisoid 17699 isocoinvid 17700 rcaninv 17701 ffthiso 17838 fuciso 17885 initoeu1 17918 initoeu2lem0 17920 initoeu2lem1 17921 initoeu2 17923 termoeu1 17925 nzerooringczr 21417 upeu2lem 49128 upeu 49271 upeu2 49272 thinccic 49571 |
| Copyright terms: Public domain | W3C validator |