| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isohom | Structured version Visualization version GIF version | ||
| Description: An isomorphism is a homomorphism. (Contributed by Mario Carneiro, 27-Jan-2017.) |
| Ref | Expression |
|---|---|
| isohom.b | ⊢ 𝐵 = (Base‘𝐶) |
| isohom.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| isohom.i | ⊢ 𝐼 = (Iso‘𝐶) |
| isohom.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| isohom.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| isohom.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| isohom | ⊢ (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋𝐻𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isohom.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | eqid 2729 | . . . 4 ⊢ (Inv‘𝐶) = (Inv‘𝐶) | |
| 3 | isohom.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | isohom.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | isohom.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | isohom.i | . . . 4 ⊢ 𝐼 = (Iso‘𝐶) | |
| 7 | 1, 2, 3, 4, 5, 6 | isoval 17707 | . . 3 ⊢ (𝜑 → (𝑋𝐼𝑌) = dom (𝑋(Inv‘𝐶)𝑌)) |
| 8 | isohom.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 9 | 1, 2, 3, 4, 5, 8 | invss 17703 | . . . 4 ⊢ (𝜑 → (𝑋(Inv‘𝐶)𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))) |
| 10 | dmss 5856 | . . . 4 ⊢ ((𝑋(Inv‘𝐶)𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)) → dom (𝑋(Inv‘𝐶)𝑌) ⊆ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → dom (𝑋(Inv‘𝐶)𝑌) ⊆ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))) |
| 12 | 7, 11 | eqsstrd 3978 | . 2 ⊢ (𝜑 → (𝑋𝐼𝑌) ⊆ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))) |
| 13 | dmxpss 6132 | . 2 ⊢ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)) ⊆ (𝑋𝐻𝑌) | |
| 14 | 12, 13 | sstrdi 3956 | 1 ⊢ (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋𝐻𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 × cxp 5629 dom cdm 5631 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 Hom chom 17207 Catccat 17605 Invcinv 17687 Isociso 17688 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-sect 17689 df-inv 17690 df-iso 17691 |
| This theorem is referenced by: invisoinvl 17732 invcoisoid 17734 isocoinvid 17735 rcaninv 17736 ffthiso 17873 fuciso 17920 initoeu1 17953 initoeu2lem0 17955 initoeu2lem1 17956 initoeu2 17958 termoeu1 17960 nzerooringczr 21422 upeu2lem 49010 upeu 49153 upeu2 49154 thinccic 49453 |
| Copyright terms: Public domain | W3C validator |