MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inviso2 Structured version   Visualization version   GIF version

Theorem inviso2 17676
Description: If 𝐺 is an inverse to 𝐹, then 𝐺 is an isomorphism. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invss.x (𝜑𝑋𝐵)
invss.y (𝜑𝑌𝐵)
isoval.n 𝐼 = (Iso‘𝐶)
inviso1.1 (𝜑𝐹(𝑋𝑁𝑌)𝐺)
Assertion
Ref Expression
inviso2 (𝜑𝐺 ∈ (𝑌𝐼𝑋))

Proof of Theorem inviso2
StepHypRef Expression
1 invfval.b . 2 𝐵 = (Base‘𝐶)
2 invfval.n . 2 𝑁 = (Inv‘𝐶)
3 invfval.c . 2 (𝜑𝐶 ∈ Cat)
4 invss.y . 2 (𝜑𝑌𝐵)
5 invss.x . 2 (𝜑𝑋𝐵)
6 isoval.n . 2 𝐼 = (Iso‘𝐶)
7 inviso1.1 . . 3 (𝜑𝐹(𝑋𝑁𝑌)𝐺)
81, 2, 3, 5, 4invsym 17671 . . 3 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺𝐺(𝑌𝑁𝑋)𝐹))
97, 8mpbid 232 . 2 (𝜑𝐺(𝑌𝑁𝑋)𝐹)
101, 2, 3, 4, 5, 6, 9inviso1 17675 1 (𝜑𝐺 ∈ (𝑌𝐼𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113   class class class wbr 5093  cfv 6486  (class class class)co 7352  Basecbs 17122  Catccat 17572  Invcinv 17654  Isociso 17655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-cat 17576  df-cid 17577  df-sect 17656  df-inv 17657  df-iso 17658
This theorem is referenced by:  yonffthlem  18190
  Copyright terms: Public domain W3C validator