![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inviso2 | Structured version Visualization version GIF version |
Description: If 𝐺 is an inverse to 𝐹, then 𝐺 is an isomorphism. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
invfval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
invfval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
isoval.n | ⊢ 𝐼 = (Iso‘𝐶) |
inviso1.1 | ⊢ (𝜑 → 𝐹(𝑋𝑁𝑌)𝐺) |
Ref | Expression |
---|---|
inviso2 | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐼𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invfval.b | . 2 ⊢ 𝐵 = (Base‘𝐶) | |
2 | invfval.n | . 2 ⊢ 𝑁 = (Inv‘𝐶) | |
3 | invfval.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | invfval.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
5 | invfval.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | isoval.n | . 2 ⊢ 𝐼 = (Iso‘𝐶) | |
7 | inviso1.1 | . . 3 ⊢ (𝜑 → 𝐹(𝑋𝑁𝑌)𝐺) | |
8 | 1, 2, 3, 5, 4 | invsym 16902 | . . 3 ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ 𝐺(𝑌𝑁𝑋)𝐹)) |
9 | 7, 8 | mpbid 224 | . 2 ⊢ (𝜑 → 𝐺(𝑌𝑁𝑋)𝐹) |
10 | 1, 2, 3, 4, 5, 6, 9 | inviso1 16906 | 1 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐼𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1508 ∈ wcel 2051 class class class wbr 4925 ‘cfv 6185 (class class class)co 6974 Basecbs 16337 Catccat 16805 Invcinv 16885 Isociso 16886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-ral 3086 df-rex 3087 df-reu 3088 df-rmo 3089 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-id 5308 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-1st 7499 df-2nd 7500 df-cat 16809 df-cid 16810 df-sect 16887 df-inv 16888 df-iso 16889 |
This theorem is referenced by: yonffthlem 17402 |
Copyright terms: Public domain | W3C validator |