![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inviso2 | Structured version Visualization version GIF version |
Description: If πΊ is an inverse to πΉ, then πΊ is an isomorphism. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
invfval.b | β’ π΅ = (BaseβπΆ) |
invfval.n | β’ π = (InvβπΆ) |
invfval.c | β’ (π β πΆ β Cat) |
invfval.x | β’ (π β π β π΅) |
invfval.y | β’ (π β π β π΅) |
isoval.n | β’ πΌ = (IsoβπΆ) |
inviso1.1 | β’ (π β πΉ(πππ)πΊ) |
Ref | Expression |
---|---|
inviso2 | β’ (π β πΊ β (ππΌπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invfval.b | . 2 β’ π΅ = (BaseβπΆ) | |
2 | invfval.n | . 2 β’ π = (InvβπΆ) | |
3 | invfval.c | . 2 β’ (π β πΆ β Cat) | |
4 | invfval.y | . 2 β’ (π β π β π΅) | |
5 | invfval.x | . 2 β’ (π β π β π΅) | |
6 | isoval.n | . 2 β’ πΌ = (IsoβπΆ) | |
7 | inviso1.1 | . . 3 β’ (π β πΉ(πππ)πΊ) | |
8 | 1, 2, 3, 5, 4 | invsym 17709 | . . 3 β’ (π β (πΉ(πππ)πΊ β πΊ(πππ)πΉ)) |
9 | 7, 8 | mpbid 231 | . 2 β’ (π β πΊ(πππ)πΉ) |
10 | 1, 2, 3, 4, 5, 6, 9 | inviso1 17713 | 1 β’ (π β πΊ β (ππΌπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 class class class wbr 5149 βcfv 6544 (class class class)co 7409 Basecbs 17144 Catccat 17608 Invcinv 17692 Isociso 17693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-cat 17612 df-cid 17613 df-sect 17694 df-inv 17695 df-iso 17696 |
This theorem is referenced by: yonffthlem 18235 |
Copyright terms: Public domain | W3C validator |