MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invisoinvl Structured version   Visualization version   GIF version

Theorem invisoinvl 17737
Description: The inverse of an isomorphism 𝐹 (which is unique because of invf 17715 and is therefore denoted by ((π‘‹π‘π‘Œ)β€˜πΉ), see also remark 3.12 in [Adamek] p. 28) is invers to the isomorphism. (Contributed by AV, 9-Apr-2020.)
Hypotheses
Ref Expression
invisoinv.b 𝐡 = (Baseβ€˜πΆ)
invisoinv.i 𝐼 = (Isoβ€˜πΆ)
invisoinv.n 𝑁 = (Invβ€˜πΆ)
invisoinv.c (πœ‘ β†’ 𝐢 ∈ Cat)
invisoinv.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
invisoinv.y (πœ‘ β†’ π‘Œ ∈ 𝐡)
invisoinv.f (πœ‘ β†’ 𝐹 ∈ (π‘‹πΌπ‘Œ))
Assertion
Ref Expression
invisoinvl (πœ‘ β†’ ((π‘‹π‘π‘Œ)β€˜πΉ)(π‘Œπ‘π‘‹)𝐹)

Proof of Theorem invisoinvl
StepHypRef Expression
1 invisoinv.b . . . 4 𝐡 = (Baseβ€˜πΆ)
2 invisoinv.n . . . 4 𝑁 = (Invβ€˜πΆ)
3 invisoinv.c . . . 4 (πœ‘ β†’ 𝐢 ∈ Cat)
4 invisoinv.x . . . 4 (πœ‘ β†’ 𝑋 ∈ 𝐡)
5 invisoinv.y . . . 4 (πœ‘ β†’ π‘Œ ∈ 𝐡)
6 invisoinv.i . . . 4 𝐼 = (Isoβ€˜πΆ)
7 invisoinv.f . . . 4 (πœ‘ β†’ 𝐹 ∈ (π‘‹πΌπ‘Œ))
8 eqid 2733 . . . 4 (compβ€˜πΆ) = (compβ€˜πΆ)
9 eqid 2733 . . . . . 6 (Idβ€˜πΆ) = (Idβ€˜πΆ)
101, 9, 3, 5idiso 17735 . . . . 5 (πœ‘ β†’ ((Idβ€˜πΆ)β€˜π‘Œ) ∈ (π‘Œ(Isoβ€˜πΆ)π‘Œ))
116a1i 11 . . . . . 6 (πœ‘ β†’ 𝐼 = (Isoβ€˜πΆ))
1211oveqd 7426 . . . . 5 (πœ‘ β†’ (π‘ŒπΌπ‘Œ) = (π‘Œ(Isoβ€˜πΆ)π‘Œ))
1310, 12eleqtrrd 2837 . . . 4 (πœ‘ β†’ ((Idβ€˜πΆ)β€˜π‘Œ) ∈ (π‘ŒπΌπ‘Œ))
141, 2, 3, 4, 5, 6, 7, 8, 5, 13invco 17718 . . 3 (πœ‘ β†’ (((Idβ€˜πΆ)β€˜π‘Œ)(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)π‘Œ)𝐹)(π‘‹π‘π‘Œ)(((π‘‹π‘π‘Œ)β€˜πΉ)(βŸ¨π‘Œ, π‘ŒβŸ©(compβ€˜πΆ)𝑋)((π‘Œπ‘π‘Œ)β€˜((Idβ€˜πΆ)β€˜π‘Œ))))
15 eqid 2733 . . . 4 (Hom β€˜πΆ) = (Hom β€˜πΆ)
161, 15, 6, 3, 4, 5isohom 17723 . . . . 5 (πœ‘ β†’ (π‘‹πΌπ‘Œ) βŠ† (𝑋(Hom β€˜πΆ)π‘Œ))
1716, 7sseldd 3984 . . . 4 (πœ‘ β†’ 𝐹 ∈ (𝑋(Hom β€˜πΆ)π‘Œ))
181, 15, 9, 3, 4, 8, 5, 17catlid 17627 . . 3 (πœ‘ β†’ (((Idβ€˜πΆ)β€˜π‘Œ)(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)π‘Œ)𝐹) = 𝐹)
192a1i 11 . . . . . . . 8 (πœ‘ β†’ 𝑁 = (Invβ€˜πΆ))
2019oveqd 7426 . . . . . . 7 (πœ‘ β†’ (π‘Œπ‘π‘Œ) = (π‘Œ(Invβ€˜πΆ)π‘Œ))
2120fveq1d 6894 . . . . . 6 (πœ‘ β†’ ((π‘Œπ‘π‘Œ)β€˜((Idβ€˜πΆ)β€˜π‘Œ)) = ((π‘Œ(Invβ€˜πΆ)π‘Œ)β€˜((Idβ€˜πΆ)β€˜π‘Œ)))
221, 9, 3, 5idinv 17736 . . . . . 6 (πœ‘ β†’ ((π‘Œ(Invβ€˜πΆ)π‘Œ)β€˜((Idβ€˜πΆ)β€˜π‘Œ)) = ((Idβ€˜πΆ)β€˜π‘Œ))
2321, 22eqtrd 2773 . . . . 5 (πœ‘ β†’ ((π‘Œπ‘π‘Œ)β€˜((Idβ€˜πΆ)β€˜π‘Œ)) = ((Idβ€˜πΆ)β€˜π‘Œ))
2423oveq2d 7425 . . . 4 (πœ‘ β†’ (((π‘‹π‘π‘Œ)β€˜πΉ)(βŸ¨π‘Œ, π‘ŒβŸ©(compβ€˜πΆ)𝑋)((π‘Œπ‘π‘Œ)β€˜((Idβ€˜πΆ)β€˜π‘Œ))) = (((π‘‹π‘π‘Œ)β€˜πΉ)(βŸ¨π‘Œ, π‘ŒβŸ©(compβ€˜πΆ)𝑋)((Idβ€˜πΆ)β€˜π‘Œ)))
251, 15, 6, 3, 5, 4isohom 17723 . . . . . 6 (πœ‘ β†’ (π‘ŒπΌπ‘‹) βŠ† (π‘Œ(Hom β€˜πΆ)𝑋))
261, 2, 3, 4, 5, 6invf 17715 . . . . . . 7 (πœ‘ β†’ (π‘‹π‘π‘Œ):(π‘‹πΌπ‘Œ)⟢(π‘ŒπΌπ‘‹))
2726, 7ffvelcdmd 7088 . . . . . 6 (πœ‘ β†’ ((π‘‹π‘π‘Œ)β€˜πΉ) ∈ (π‘ŒπΌπ‘‹))
2825, 27sseldd 3984 . . . . 5 (πœ‘ β†’ ((π‘‹π‘π‘Œ)β€˜πΉ) ∈ (π‘Œ(Hom β€˜πΆ)𝑋))
291, 15, 9, 3, 5, 8, 4, 28catrid 17628 . . . 4 (πœ‘ β†’ (((π‘‹π‘π‘Œ)β€˜πΉ)(βŸ¨π‘Œ, π‘ŒβŸ©(compβ€˜πΆ)𝑋)((Idβ€˜πΆ)β€˜π‘Œ)) = ((π‘‹π‘π‘Œ)β€˜πΉ))
3024, 29eqtrd 2773 . . 3 (πœ‘ β†’ (((π‘‹π‘π‘Œ)β€˜πΉ)(βŸ¨π‘Œ, π‘ŒβŸ©(compβ€˜πΆ)𝑋)((π‘Œπ‘π‘Œ)β€˜((Idβ€˜πΆ)β€˜π‘Œ))) = ((π‘‹π‘π‘Œ)β€˜πΉ))
3114, 18, 303brtr3d 5180 . 2 (πœ‘ β†’ 𝐹(π‘‹π‘π‘Œ)((π‘‹π‘π‘Œ)β€˜πΉ))
321, 2, 3, 5, 4invsym 17709 . 2 (πœ‘ β†’ (((π‘‹π‘π‘Œ)β€˜πΉ)(π‘Œπ‘π‘‹)𝐹 ↔ 𝐹(π‘‹π‘π‘Œ)((π‘‹π‘π‘Œ)β€˜πΉ)))
3331, 32mpbird 257 1 (πœ‘ β†’ ((π‘‹π‘π‘Œ)β€˜πΉ)(π‘Œπ‘π‘‹)𝐹)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107  βŸ¨cop 4635   class class class wbr 5149  β€˜cfv 6544  (class class class)co 7409  Basecbs 17144  Hom chom 17208  compcco 17209  Catccat 17608  Idccid 17609  Invcinv 17692  Isociso 17693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-cat 17612  df-cid 17613  df-sect 17694  df-inv 17695  df-iso 17696
This theorem is referenced by:  invisoinvr  17738  isocoinvid  17740
  Copyright terms: Public domain W3C validator