![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > invisoinvl | Structured version Visualization version GIF version |
Description: The inverse of an isomorphism 𝐹 (which is unique because of invf 17816 and is therefore denoted by ((𝑋𝑁𝑌)‘𝐹), see also remark 3.12 in [Adamek] p. 28) is invers to the isomorphism. (Contributed by AV, 9-Apr-2020.) |
Ref | Expression |
---|---|
invisoinv.b | ⊢ 𝐵 = (Base‘𝐶) |
invisoinv.i | ⊢ 𝐼 = (Iso‘𝐶) |
invisoinv.n | ⊢ 𝑁 = (Inv‘𝐶) |
invisoinv.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
invisoinv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
invisoinv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
invisoinv.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
Ref | Expression |
---|---|
invisoinvl | ⊢ (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invisoinv.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
2 | invisoinv.n | . . . 4 ⊢ 𝑁 = (Inv‘𝐶) | |
3 | invisoinv.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | invisoinv.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | invisoinv.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | invisoinv.i | . . . 4 ⊢ 𝐼 = (Iso‘𝐶) | |
7 | invisoinv.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) | |
8 | eqid 2735 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
9 | eqid 2735 | . . . . . 6 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
10 | 1, 9, 3, 5 | idiso 17836 | . . . . 5 ⊢ (𝜑 → ((Id‘𝐶)‘𝑌) ∈ (𝑌(Iso‘𝐶)𝑌)) |
11 | 6 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐼 = (Iso‘𝐶)) |
12 | 11 | oveqd 7448 | . . . . 5 ⊢ (𝜑 → (𝑌𝐼𝑌) = (𝑌(Iso‘𝐶)𝑌)) |
13 | 10, 12 | eleqtrrd 2842 | . . . 4 ⊢ (𝜑 → ((Id‘𝐶)‘𝑌) ∈ (𝑌𝐼𝑌)) |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 5, 13 | invco 17819 | . . 3 ⊢ (𝜑 → (((Id‘𝐶)‘𝑌)(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)𝐹)(𝑋𝑁𝑌)(((𝑋𝑁𝑌)‘𝐹)(〈𝑌, 𝑌〉(comp‘𝐶)𝑋)((𝑌𝑁𝑌)‘((Id‘𝐶)‘𝑌)))) |
15 | eqid 2735 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
16 | 1, 15, 6, 3, 4, 5 | isohom 17824 | . . . . 5 ⊢ (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋(Hom ‘𝐶)𝑌)) |
17 | 16, 7 | sseldd 3996 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)) |
18 | 1, 15, 9, 3, 4, 8, 5, 17 | catlid 17728 | . . 3 ⊢ (𝜑 → (((Id‘𝐶)‘𝑌)(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)𝐹) = 𝐹) |
19 | 2 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 = (Inv‘𝐶)) |
20 | 19 | oveqd 7448 | . . . . . . 7 ⊢ (𝜑 → (𝑌𝑁𝑌) = (𝑌(Inv‘𝐶)𝑌)) |
21 | 20 | fveq1d 6909 | . . . . . 6 ⊢ (𝜑 → ((𝑌𝑁𝑌)‘((Id‘𝐶)‘𝑌)) = ((𝑌(Inv‘𝐶)𝑌)‘((Id‘𝐶)‘𝑌))) |
22 | 1, 9, 3, 5 | idinv 17837 | . . . . . 6 ⊢ (𝜑 → ((𝑌(Inv‘𝐶)𝑌)‘((Id‘𝐶)‘𝑌)) = ((Id‘𝐶)‘𝑌)) |
23 | 21, 22 | eqtrd 2775 | . . . . 5 ⊢ (𝜑 → ((𝑌𝑁𝑌)‘((Id‘𝐶)‘𝑌)) = ((Id‘𝐶)‘𝑌)) |
24 | 23 | oveq2d 7447 | . . . 4 ⊢ (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(〈𝑌, 𝑌〉(comp‘𝐶)𝑋)((𝑌𝑁𝑌)‘((Id‘𝐶)‘𝑌))) = (((𝑋𝑁𝑌)‘𝐹)(〈𝑌, 𝑌〉(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑌))) |
25 | 1, 15, 6, 3, 5, 4 | isohom 17824 | . . . . . 6 ⊢ (𝜑 → (𝑌𝐼𝑋) ⊆ (𝑌(Hom ‘𝐶)𝑋)) |
26 | 1, 2, 3, 4, 5, 6 | invf 17816 | . . . . . . 7 ⊢ (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋)) |
27 | 26, 7 | ffvelcdmd 7105 | . . . . . 6 ⊢ (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌𝐼𝑋)) |
28 | 25, 27 | sseldd 3996 | . . . . 5 ⊢ (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌(Hom ‘𝐶)𝑋)) |
29 | 1, 15, 9, 3, 5, 8, 4, 28 | catrid 17729 | . . . 4 ⊢ (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(〈𝑌, 𝑌〉(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑌)) = ((𝑋𝑁𝑌)‘𝐹)) |
30 | 24, 29 | eqtrd 2775 | . . 3 ⊢ (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(〈𝑌, 𝑌〉(comp‘𝐶)𝑋)((𝑌𝑁𝑌)‘((Id‘𝐶)‘𝑌))) = ((𝑋𝑁𝑌)‘𝐹)) |
31 | 14, 18, 30 | 3brtr3d 5179 | . 2 ⊢ (𝜑 → 𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹)) |
32 | 1, 2, 3, 5, 4 | invsym 17810 | . 2 ⊢ (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹 ↔ 𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹))) |
33 | 31, 32 | mpbird 257 | 1 ⊢ (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 〈cop 4637 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 Hom chom 17309 compcco 17310 Catccat 17709 Idccid 17710 Invcinv 17793 Isociso 17794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-cat 17713 df-cid 17714 df-sect 17795 df-inv 17796 df-iso 17797 |
This theorem is referenced by: invisoinvr 17839 isocoinvid 17841 |
Copyright terms: Public domain | W3C validator |