MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invisoinvl Structured version   Visualization version   GIF version

Theorem invisoinvl 17569
Description: The inverse of an isomorphism 𝐹 (which is unique because of invf 17547 and is therefore denoted by ((𝑋𝑁𝑌)‘𝐹), see also remark 3.12 in [Adamek] p. 28) is invers to the isomorphism. (Contributed by AV, 9-Apr-2020.)
Hypotheses
Ref Expression
invisoinv.b 𝐵 = (Base‘𝐶)
invisoinv.i 𝐼 = (Iso‘𝐶)
invisoinv.n 𝑁 = (Inv‘𝐶)
invisoinv.c (𝜑𝐶 ∈ Cat)
invisoinv.x (𝜑𝑋𝐵)
invisoinv.y (𝜑𝑌𝐵)
invisoinv.f (𝜑𝐹 ∈ (𝑋𝐼𝑌))
Assertion
Ref Expression
invisoinvl (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹)

Proof of Theorem invisoinvl
StepHypRef Expression
1 invisoinv.b . . . 4 𝐵 = (Base‘𝐶)
2 invisoinv.n . . . 4 𝑁 = (Inv‘𝐶)
3 invisoinv.c . . . 4 (𝜑𝐶 ∈ Cat)
4 invisoinv.x . . . 4 (𝜑𝑋𝐵)
5 invisoinv.y . . . 4 (𝜑𝑌𝐵)
6 invisoinv.i . . . 4 𝐼 = (Iso‘𝐶)
7 invisoinv.f . . . 4 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
8 eqid 2737 . . . 4 (comp‘𝐶) = (comp‘𝐶)
9 eqid 2737 . . . . . 6 (Id‘𝐶) = (Id‘𝐶)
101, 9, 3, 5idiso 17567 . . . . 5 (𝜑 → ((Id‘𝐶)‘𝑌) ∈ (𝑌(Iso‘𝐶)𝑌))
116a1i 11 . . . . . 6 (𝜑𝐼 = (Iso‘𝐶))
1211oveqd 7330 . . . . 5 (𝜑 → (𝑌𝐼𝑌) = (𝑌(Iso‘𝐶)𝑌))
1310, 12eleqtrrd 2841 . . . 4 (𝜑 → ((Id‘𝐶)‘𝑌) ∈ (𝑌𝐼𝑌))
141, 2, 3, 4, 5, 6, 7, 8, 5, 13invco 17550 . . 3 (𝜑 → (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐹)(𝑋𝑁𝑌)(((𝑋𝑁𝑌)‘𝐹)(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑋)((𝑌𝑁𝑌)‘((Id‘𝐶)‘𝑌))))
15 eqid 2737 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
161, 15, 6, 3, 4, 5isohom 17555 . . . . 5 (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋(Hom ‘𝐶)𝑌))
1716, 7sseldd 3931 . . . 4 (𝜑𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
181, 15, 9, 3, 4, 8, 5, 17catlid 17459 . . 3 (𝜑 → (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐹) = 𝐹)
192a1i 11 . . . . . . . 8 (𝜑𝑁 = (Inv‘𝐶))
2019oveqd 7330 . . . . . . 7 (𝜑 → (𝑌𝑁𝑌) = (𝑌(Inv‘𝐶)𝑌))
2120fveq1d 6811 . . . . . 6 (𝜑 → ((𝑌𝑁𝑌)‘((Id‘𝐶)‘𝑌)) = ((𝑌(Inv‘𝐶)𝑌)‘((Id‘𝐶)‘𝑌)))
221, 9, 3, 5idinv 17568 . . . . . 6 (𝜑 → ((𝑌(Inv‘𝐶)𝑌)‘((Id‘𝐶)‘𝑌)) = ((Id‘𝐶)‘𝑌))
2321, 22eqtrd 2777 . . . . 5 (𝜑 → ((𝑌𝑁𝑌)‘((Id‘𝐶)‘𝑌)) = ((Id‘𝐶)‘𝑌))
2423oveq2d 7329 . . . 4 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑋)((𝑌𝑁𝑌)‘((Id‘𝐶)‘𝑌))) = (((𝑋𝑁𝑌)‘𝐹)(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑌)))
251, 15, 6, 3, 5, 4isohom 17555 . . . . . 6 (𝜑 → (𝑌𝐼𝑋) ⊆ (𝑌(Hom ‘𝐶)𝑋))
261, 2, 3, 4, 5, 6invf 17547 . . . . . . 7 (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋))
2726, 7ffvelcdmd 6999 . . . . . 6 (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌𝐼𝑋))
2825, 27sseldd 3931 . . . . 5 (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌(Hom ‘𝐶)𝑋))
291, 15, 9, 3, 5, 8, 4, 28catrid 17460 . . . 4 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑌)) = ((𝑋𝑁𝑌)‘𝐹))
3024, 29eqtrd 2777 . . 3 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑋)((𝑌𝑁𝑌)‘((Id‘𝐶)‘𝑌))) = ((𝑋𝑁𝑌)‘𝐹))
3114, 18, 303brtr3d 5116 . 2 (𝜑𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹))
321, 2, 3, 5, 4invsym 17541 . 2 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹)))
3331, 32mpbird 256 1 (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  cop 4575   class class class wbr 5085  cfv 6463  (class class class)co 7313  Basecbs 16979  Hom chom 17040  compcco 17041  Catccat 17440  Idccid 17441  Invcinv 17524  Isociso 17525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5222  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-id 5505  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-1st 7874  df-2nd 7875  df-cat 17444  df-cid 17445  df-sect 17526  df-inv 17527  df-iso 17528
This theorem is referenced by:  invisoinvr  17570  isocoinvid  17572
  Copyright terms: Public domain W3C validator