Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > invisoinvl | Structured version Visualization version GIF version |
Description: The inverse of an isomorphism 𝐹 (which is unique because of invf 17397 and is therefore denoted by ((𝑋𝑁𝑌)‘𝐹), see also remark 3.12 in [Adamek] p. 28) is invers to the isomorphism. (Contributed by AV, 9-Apr-2020.) |
Ref | Expression |
---|---|
invisoinv.b | ⊢ 𝐵 = (Base‘𝐶) |
invisoinv.i | ⊢ 𝐼 = (Iso‘𝐶) |
invisoinv.n | ⊢ 𝑁 = (Inv‘𝐶) |
invisoinv.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
invisoinv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
invisoinv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
invisoinv.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
Ref | Expression |
---|---|
invisoinvl | ⊢ (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invisoinv.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
2 | invisoinv.n | . . . 4 ⊢ 𝑁 = (Inv‘𝐶) | |
3 | invisoinv.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | invisoinv.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | invisoinv.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | invisoinv.i | . . . 4 ⊢ 𝐼 = (Iso‘𝐶) | |
7 | invisoinv.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) | |
8 | eqid 2738 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
9 | eqid 2738 | . . . . . 6 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
10 | 1, 9, 3, 5 | idiso 17417 | . . . . 5 ⊢ (𝜑 → ((Id‘𝐶)‘𝑌) ∈ (𝑌(Iso‘𝐶)𝑌)) |
11 | 6 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐼 = (Iso‘𝐶)) |
12 | 11 | oveqd 7272 | . . . . 5 ⊢ (𝜑 → (𝑌𝐼𝑌) = (𝑌(Iso‘𝐶)𝑌)) |
13 | 10, 12 | eleqtrrd 2842 | . . . 4 ⊢ (𝜑 → ((Id‘𝐶)‘𝑌) ∈ (𝑌𝐼𝑌)) |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 5, 13 | invco 17400 | . . 3 ⊢ (𝜑 → (((Id‘𝐶)‘𝑌)(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)𝐹)(𝑋𝑁𝑌)(((𝑋𝑁𝑌)‘𝐹)(〈𝑌, 𝑌〉(comp‘𝐶)𝑋)((𝑌𝑁𝑌)‘((Id‘𝐶)‘𝑌)))) |
15 | eqid 2738 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
16 | 1, 15, 6, 3, 4, 5 | isohom 17405 | . . . . 5 ⊢ (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋(Hom ‘𝐶)𝑌)) |
17 | 16, 7 | sseldd 3918 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)) |
18 | 1, 15, 9, 3, 4, 8, 5, 17 | catlid 17309 | . . 3 ⊢ (𝜑 → (((Id‘𝐶)‘𝑌)(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)𝐹) = 𝐹) |
19 | 2 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 = (Inv‘𝐶)) |
20 | 19 | oveqd 7272 | . . . . . . 7 ⊢ (𝜑 → (𝑌𝑁𝑌) = (𝑌(Inv‘𝐶)𝑌)) |
21 | 20 | fveq1d 6758 | . . . . . 6 ⊢ (𝜑 → ((𝑌𝑁𝑌)‘((Id‘𝐶)‘𝑌)) = ((𝑌(Inv‘𝐶)𝑌)‘((Id‘𝐶)‘𝑌))) |
22 | 1, 9, 3, 5 | idinv 17418 | . . . . . 6 ⊢ (𝜑 → ((𝑌(Inv‘𝐶)𝑌)‘((Id‘𝐶)‘𝑌)) = ((Id‘𝐶)‘𝑌)) |
23 | 21, 22 | eqtrd 2778 | . . . . 5 ⊢ (𝜑 → ((𝑌𝑁𝑌)‘((Id‘𝐶)‘𝑌)) = ((Id‘𝐶)‘𝑌)) |
24 | 23 | oveq2d 7271 | . . . 4 ⊢ (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(〈𝑌, 𝑌〉(comp‘𝐶)𝑋)((𝑌𝑁𝑌)‘((Id‘𝐶)‘𝑌))) = (((𝑋𝑁𝑌)‘𝐹)(〈𝑌, 𝑌〉(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑌))) |
25 | 1, 15, 6, 3, 5, 4 | isohom 17405 | . . . . . 6 ⊢ (𝜑 → (𝑌𝐼𝑋) ⊆ (𝑌(Hom ‘𝐶)𝑋)) |
26 | 1, 2, 3, 4, 5, 6 | invf 17397 | . . . . . . 7 ⊢ (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋)) |
27 | 26, 7 | ffvelrnd 6944 | . . . . . 6 ⊢ (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌𝐼𝑋)) |
28 | 25, 27 | sseldd 3918 | . . . . 5 ⊢ (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌(Hom ‘𝐶)𝑋)) |
29 | 1, 15, 9, 3, 5, 8, 4, 28 | catrid 17310 | . . . 4 ⊢ (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(〈𝑌, 𝑌〉(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑌)) = ((𝑋𝑁𝑌)‘𝐹)) |
30 | 24, 29 | eqtrd 2778 | . . 3 ⊢ (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(〈𝑌, 𝑌〉(comp‘𝐶)𝑋)((𝑌𝑁𝑌)‘((Id‘𝐶)‘𝑌))) = ((𝑋𝑁𝑌)‘𝐹)) |
31 | 14, 18, 30 | 3brtr3d 5101 | . 2 ⊢ (𝜑 → 𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹)) |
32 | 1, 2, 3, 5, 4 | invsym 17391 | . 2 ⊢ (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹 ↔ 𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹))) |
33 | 31, 32 | mpbird 256 | 1 ⊢ (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 〈cop 4564 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 Hom chom 16899 compcco 16900 Catccat 17290 Idccid 17291 Invcinv 17374 Isociso 17375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-cat 17294 df-cid 17295 df-sect 17376 df-inv 17377 df-iso 17378 |
This theorem is referenced by: invisoinvr 17420 isocoinvid 17422 |
Copyright terms: Public domain | W3C validator |