MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invisoinvl Structured version   Visualization version   GIF version

Theorem invisoinvl 16802
Description: The inverse of an isomorphism 𝐹 (which is unique because of invf 16780 and is therefore denoted by ((𝑋𝑁𝑌)‘𝐹), see also remark 3.12 in [Adamek] p. 28) is invers to the isomorphism. (Contributed by AV, 9-Apr-2020.)
Hypotheses
Ref Expression
invisoinv.b 𝐵 = (Base‘𝐶)
invisoinv.i 𝐼 = (Iso‘𝐶)
invisoinv.n 𝑁 = (Inv‘𝐶)
invisoinv.c (𝜑𝐶 ∈ Cat)
invisoinv.x (𝜑𝑋𝐵)
invisoinv.y (𝜑𝑌𝐵)
invisoinv.f (𝜑𝐹 ∈ (𝑋𝐼𝑌))
Assertion
Ref Expression
invisoinvl (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹)

Proof of Theorem invisoinvl
StepHypRef Expression
1 invisoinv.b . . . 4 𝐵 = (Base‘𝐶)
2 invisoinv.n . . . 4 𝑁 = (Inv‘𝐶)
3 invisoinv.c . . . 4 (𝜑𝐶 ∈ Cat)
4 invisoinv.x . . . 4 (𝜑𝑋𝐵)
5 invisoinv.y . . . 4 (𝜑𝑌𝐵)
6 invisoinv.i . . . 4 𝐼 = (Iso‘𝐶)
7 invisoinv.f . . . 4 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
8 eqid 2825 . . . 4 (comp‘𝐶) = (comp‘𝐶)
9 eqid 2825 . . . . . 6 (Id‘𝐶) = (Id‘𝐶)
101, 9, 3, 5idiso 16800 . . . . 5 (𝜑 → ((Id‘𝐶)‘𝑌) ∈ (𝑌(Iso‘𝐶)𝑌))
116a1i 11 . . . . . 6 (𝜑𝐼 = (Iso‘𝐶))
1211oveqd 6922 . . . . 5 (𝜑 → (𝑌𝐼𝑌) = (𝑌(Iso‘𝐶)𝑌))
1310, 12eleqtrrd 2909 . . . 4 (𝜑 → ((Id‘𝐶)‘𝑌) ∈ (𝑌𝐼𝑌))
141, 2, 3, 4, 5, 6, 7, 8, 5, 13invco 16783 . . 3 (𝜑 → (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐹)(𝑋𝑁𝑌)(((𝑋𝑁𝑌)‘𝐹)(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑋)((𝑌𝑁𝑌)‘((Id‘𝐶)‘𝑌))))
15 eqid 2825 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
161, 15, 6, 3, 4, 5isohom 16788 . . . . 5 (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋(Hom ‘𝐶)𝑌))
1716, 7sseldd 3828 . . . 4 (𝜑𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
181, 15, 9, 3, 4, 8, 5, 17catlid 16696 . . 3 (𝜑 → (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐹) = 𝐹)
192a1i 11 . . . . . . . 8 (𝜑𝑁 = (Inv‘𝐶))
2019oveqd 6922 . . . . . . 7 (𝜑 → (𝑌𝑁𝑌) = (𝑌(Inv‘𝐶)𝑌))
2120fveq1d 6435 . . . . . 6 (𝜑 → ((𝑌𝑁𝑌)‘((Id‘𝐶)‘𝑌)) = ((𝑌(Inv‘𝐶)𝑌)‘((Id‘𝐶)‘𝑌)))
221, 9, 3, 5idinv 16801 . . . . . 6 (𝜑 → ((𝑌(Inv‘𝐶)𝑌)‘((Id‘𝐶)‘𝑌)) = ((Id‘𝐶)‘𝑌))
2321, 22eqtrd 2861 . . . . 5 (𝜑 → ((𝑌𝑁𝑌)‘((Id‘𝐶)‘𝑌)) = ((Id‘𝐶)‘𝑌))
2423oveq2d 6921 . . . 4 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑋)((𝑌𝑁𝑌)‘((Id‘𝐶)‘𝑌))) = (((𝑋𝑁𝑌)‘𝐹)(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑌)))
251, 15, 6, 3, 5, 4isohom 16788 . . . . . 6 (𝜑 → (𝑌𝐼𝑋) ⊆ (𝑌(Hom ‘𝐶)𝑋))
261, 2, 3, 4, 5, 6invf 16780 . . . . . . 7 (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋))
2726, 7ffvelrnd 6609 . . . . . 6 (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌𝐼𝑋))
2825, 27sseldd 3828 . . . . 5 (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌(Hom ‘𝐶)𝑋))
291, 15, 9, 3, 5, 8, 4, 28catrid 16697 . . . 4 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑌)) = ((𝑋𝑁𝑌)‘𝐹))
3024, 29eqtrd 2861 . . 3 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑋)((𝑌𝑁𝑌)‘((Id‘𝐶)‘𝑌))) = ((𝑋𝑁𝑌)‘𝐹))
3114, 18, 303brtr3d 4904 . 2 (𝜑𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹))
321, 2, 3, 5, 4invsym 16774 . 2 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹)))
3331, 32mpbird 249 1 (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1658  wcel 2166  cop 4403   class class class wbr 4873  cfv 6123  (class class class)co 6905  Basecbs 16222  Hom chom 16316  compcco 16317  Catccat 16677  Idccid 16678  Invcinv 16757  Isociso 16758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-1st 7428  df-2nd 7429  df-cat 16681  df-cid 16682  df-sect 16759  df-inv 16760  df-iso 16761
This theorem is referenced by:  invisoinvr  16803  isocoinvid  16805
  Copyright terms: Public domain W3C validator