MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invisoinvl Structured version   Visualization version   GIF version

Theorem invisoinvl 17728
Description: The inverse of an isomorphism 𝐹 (which is unique because of invf 17706 and is therefore denoted by ((𝑋𝑁𝑌)‘𝐹), see also remark 3.12 in [Adamek] p. 28) is invers to the isomorphism. (Contributed by AV, 9-Apr-2020.)
Hypotheses
Ref Expression
invisoinv.b 𝐵 = (Base‘𝐶)
invisoinv.i 𝐼 = (Iso‘𝐶)
invisoinv.n 𝑁 = (Inv‘𝐶)
invisoinv.c (𝜑𝐶 ∈ Cat)
invisoinv.x (𝜑𝑋𝐵)
invisoinv.y (𝜑𝑌𝐵)
invisoinv.f (𝜑𝐹 ∈ (𝑋𝐼𝑌))
Assertion
Ref Expression
invisoinvl (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹)

Proof of Theorem invisoinvl
StepHypRef Expression
1 invisoinv.b . . . 4 𝐵 = (Base‘𝐶)
2 invisoinv.n . . . 4 𝑁 = (Inv‘𝐶)
3 invisoinv.c . . . 4 (𝜑𝐶 ∈ Cat)
4 invisoinv.x . . . 4 (𝜑𝑋𝐵)
5 invisoinv.y . . . 4 (𝜑𝑌𝐵)
6 invisoinv.i . . . 4 𝐼 = (Iso‘𝐶)
7 invisoinv.f . . . 4 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
8 eqid 2729 . . . 4 (comp‘𝐶) = (comp‘𝐶)
9 eqid 2729 . . . . . 6 (Id‘𝐶) = (Id‘𝐶)
101, 9, 3, 5idiso 17726 . . . . 5 (𝜑 → ((Id‘𝐶)‘𝑌) ∈ (𝑌(Iso‘𝐶)𝑌))
116a1i 11 . . . . . 6 (𝜑𝐼 = (Iso‘𝐶))
1211oveqd 7386 . . . . 5 (𝜑 → (𝑌𝐼𝑌) = (𝑌(Iso‘𝐶)𝑌))
1310, 12eleqtrrd 2831 . . . 4 (𝜑 → ((Id‘𝐶)‘𝑌) ∈ (𝑌𝐼𝑌))
141, 2, 3, 4, 5, 6, 7, 8, 5, 13invco 17709 . . 3 (𝜑 → (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐹)(𝑋𝑁𝑌)(((𝑋𝑁𝑌)‘𝐹)(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑋)((𝑌𝑁𝑌)‘((Id‘𝐶)‘𝑌))))
15 eqid 2729 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
161, 15, 6, 3, 4, 5isohom 17714 . . . . 5 (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋(Hom ‘𝐶)𝑌))
1716, 7sseldd 3944 . . . 4 (𝜑𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
181, 15, 9, 3, 4, 8, 5, 17catlid 17620 . . 3 (𝜑 → (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐹) = 𝐹)
192a1i 11 . . . . . . . 8 (𝜑𝑁 = (Inv‘𝐶))
2019oveqd 7386 . . . . . . 7 (𝜑 → (𝑌𝑁𝑌) = (𝑌(Inv‘𝐶)𝑌))
2120fveq1d 6842 . . . . . 6 (𝜑 → ((𝑌𝑁𝑌)‘((Id‘𝐶)‘𝑌)) = ((𝑌(Inv‘𝐶)𝑌)‘((Id‘𝐶)‘𝑌)))
221, 9, 3, 5idinv 17727 . . . . . 6 (𝜑 → ((𝑌(Inv‘𝐶)𝑌)‘((Id‘𝐶)‘𝑌)) = ((Id‘𝐶)‘𝑌))
2321, 22eqtrd 2764 . . . . 5 (𝜑 → ((𝑌𝑁𝑌)‘((Id‘𝐶)‘𝑌)) = ((Id‘𝐶)‘𝑌))
2423oveq2d 7385 . . . 4 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑋)((𝑌𝑁𝑌)‘((Id‘𝐶)‘𝑌))) = (((𝑋𝑁𝑌)‘𝐹)(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑌)))
251, 15, 6, 3, 5, 4isohom 17714 . . . . . 6 (𝜑 → (𝑌𝐼𝑋) ⊆ (𝑌(Hom ‘𝐶)𝑋))
261, 2, 3, 4, 5, 6invf 17706 . . . . . . 7 (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋))
2726, 7ffvelcdmd 7039 . . . . . 6 (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌𝐼𝑋))
2825, 27sseldd 3944 . . . . 5 (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌(Hom ‘𝐶)𝑋))
291, 15, 9, 3, 5, 8, 4, 28catrid 17621 . . . 4 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑌)) = ((𝑋𝑁𝑌)‘𝐹))
3024, 29eqtrd 2764 . . 3 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑋)((𝑌𝑁𝑌)‘((Id‘𝐶)‘𝑌))) = ((𝑋𝑁𝑌)‘𝐹))
3114, 18, 303brtr3d 5133 . 2 (𝜑𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹))
321, 2, 3, 5, 4invsym 17700 . 2 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹)))
3331, 32mpbird 257 1 (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4591   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  Hom chom 17207  compcco 17208  Catccat 17601  Idccid 17602  Invcinv 17683  Isociso 17684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-cat 17605  df-cid 17606  df-sect 17685  df-inv 17686  df-iso 17687
This theorem is referenced by:  invisoinvr  17729  isocoinvid  17731
  Copyright terms: Public domain W3C validator