Step | Hyp | Ref
| Expression |
1 | | invisoinv.b |
. . . 4
β’ π΅ = (BaseβπΆ) |
2 | | invisoinv.n |
. . . 4
β’ π = (InvβπΆ) |
3 | | invisoinv.c |
. . . 4
β’ (π β πΆ β Cat) |
4 | | invisoinv.x |
. . . 4
β’ (π β π β π΅) |
5 | | invisoinv.y |
. . . 4
β’ (π β π β π΅) |
6 | | invisoinv.i |
. . . 4
β’ πΌ = (IsoβπΆ) |
7 | | invisoinv.f |
. . . 4
β’ (π β πΉ β (ππΌπ)) |
8 | | eqid 2733 |
. . . 4
β’
(compβπΆ) =
(compβπΆ) |
9 | | eqid 2733 |
. . . . . 6
β’
(IdβπΆ) =
(IdβπΆ) |
10 | 1, 9, 3, 5 | idiso 17735 |
. . . . 5
β’ (π β ((IdβπΆ)βπ) β (π(IsoβπΆ)π)) |
11 | 6 | a1i 11 |
. . . . . 6
β’ (π β πΌ = (IsoβπΆ)) |
12 | 11 | oveqd 7426 |
. . . . 5
β’ (π β (ππΌπ) = (π(IsoβπΆ)π)) |
13 | 10, 12 | eleqtrrd 2837 |
. . . 4
β’ (π β ((IdβπΆ)βπ) β (ππΌπ)) |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 5, 13 | invco 17718 |
. . 3
β’ (π β (((IdβπΆ)βπ)(β¨π, πβ©(compβπΆ)π)πΉ)(πππ)(((πππ)βπΉ)(β¨π, πβ©(compβπΆ)π)((πππ)β((IdβπΆ)βπ)))) |
15 | | eqid 2733 |
. . . 4
β’ (Hom
βπΆ) = (Hom
βπΆ) |
16 | 1, 15, 6, 3, 4, 5 | isohom 17723 |
. . . . 5
β’ (π β (ππΌπ) β (π(Hom βπΆ)π)) |
17 | 16, 7 | sseldd 3984 |
. . . 4
β’ (π β πΉ β (π(Hom βπΆ)π)) |
18 | 1, 15, 9, 3, 4, 8, 5, 17 | catlid 17627 |
. . 3
β’ (π β (((IdβπΆ)βπ)(β¨π, πβ©(compβπΆ)π)πΉ) = πΉ) |
19 | 2 | a1i 11 |
. . . . . . . 8
β’ (π β π = (InvβπΆ)) |
20 | 19 | oveqd 7426 |
. . . . . . 7
β’ (π β (πππ) = (π(InvβπΆ)π)) |
21 | 20 | fveq1d 6894 |
. . . . . 6
β’ (π β ((πππ)β((IdβπΆ)βπ)) = ((π(InvβπΆ)π)β((IdβπΆ)βπ))) |
22 | 1, 9, 3, 5 | idinv 17736 |
. . . . . 6
β’ (π β ((π(InvβπΆ)π)β((IdβπΆ)βπ)) = ((IdβπΆ)βπ)) |
23 | 21, 22 | eqtrd 2773 |
. . . . 5
β’ (π β ((πππ)β((IdβπΆ)βπ)) = ((IdβπΆ)βπ)) |
24 | 23 | oveq2d 7425 |
. . . 4
β’ (π β (((πππ)βπΉ)(β¨π, πβ©(compβπΆ)π)((πππ)β((IdβπΆ)βπ))) = (((πππ)βπΉ)(β¨π, πβ©(compβπΆ)π)((IdβπΆ)βπ))) |
25 | 1, 15, 6, 3, 5, 4 | isohom 17723 |
. . . . . 6
β’ (π β (ππΌπ) β (π(Hom βπΆ)π)) |
26 | 1, 2, 3, 4, 5, 6 | invf 17715 |
. . . . . . 7
β’ (π β (πππ):(ππΌπ)βΆ(ππΌπ)) |
27 | 26, 7 | ffvelcdmd 7088 |
. . . . . 6
β’ (π β ((πππ)βπΉ) β (ππΌπ)) |
28 | 25, 27 | sseldd 3984 |
. . . . 5
β’ (π β ((πππ)βπΉ) β (π(Hom βπΆ)π)) |
29 | 1, 15, 9, 3, 5, 8, 4, 28 | catrid 17628 |
. . . 4
β’ (π β (((πππ)βπΉ)(β¨π, πβ©(compβπΆ)π)((IdβπΆ)βπ)) = ((πππ)βπΉ)) |
30 | 24, 29 | eqtrd 2773 |
. . 3
β’ (π β (((πππ)βπΉ)(β¨π, πβ©(compβπΆ)π)((πππ)β((IdβπΆ)βπ))) = ((πππ)βπΉ)) |
31 | 14, 18, 30 | 3brtr3d 5180 |
. 2
β’ (π β πΉ(πππ)((πππ)βπΉ)) |
32 | 1, 2, 3, 5, 4 | invsym 17709 |
. 2
β’ (π β (((πππ)βπΉ)(πππ)πΉ β πΉ(πππ)((πππ)βπΉ))) |
33 | 31, 32 | mpbird 257 |
1
β’ (π β ((πππ)βπΉ)(πππ)πΉ) |