MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invisoinvr Structured version   Visualization version   GIF version

Theorem invisoinvr 17836
Description: The inverse of an isomorphism is invers to the isomorphism. (Contributed by AV, 9-Apr-2020.)
Hypotheses
Ref Expression
invisoinv.b 𝐵 = (Base‘𝐶)
invisoinv.i 𝐼 = (Iso‘𝐶)
invisoinv.n 𝑁 = (Inv‘𝐶)
invisoinv.c (𝜑𝐶 ∈ Cat)
invisoinv.x (𝜑𝑋𝐵)
invisoinv.y (𝜑𝑌𝐵)
invisoinv.f (𝜑𝐹 ∈ (𝑋𝐼𝑌))
Assertion
Ref Expression
invisoinvr (𝜑𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹))

Proof of Theorem invisoinvr
StepHypRef Expression
1 invisoinv.b . . 3 𝐵 = (Base‘𝐶)
2 invisoinv.i . . 3 𝐼 = (Iso‘𝐶)
3 invisoinv.n . . 3 𝑁 = (Inv‘𝐶)
4 invisoinv.c . . 3 (𝜑𝐶 ∈ Cat)
5 invisoinv.x . . 3 (𝜑𝑋𝐵)
6 invisoinv.y . . 3 (𝜑𝑌𝐵)
7 invisoinv.f . . 3 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
81, 2, 3, 4, 5, 6, 7invisoinvl 17835 . 2 (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹)
91, 3, 4, 5, 6invsym 17807 . 2 (𝜑 → (𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹) ↔ ((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹))
108, 9mpbird 257 1 (𝜑𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107   class class class wbr 5142  cfv 6560  (class class class)co 7432  Basecbs 17248  Catccat 17708  Invcinv 17790  Isociso 17791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-cat 17712  df-cid 17713  df-sect 17792  df-inv 17793  df-iso 17794
This theorem is referenced by:  invcoisoid  17837  funciso  17920  fuciso  18024
  Copyright terms: Public domain W3C validator