MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invisoinvr Structured version   Visualization version   GIF version

Theorem invisoinvr 17698
Description: The inverse of an isomorphism is invers to the isomorphism. (Contributed by AV, 9-Apr-2020.)
Hypotheses
Ref Expression
invisoinv.b 𝐵 = (Base‘𝐶)
invisoinv.i 𝐼 = (Iso‘𝐶)
invisoinv.n 𝑁 = (Inv‘𝐶)
invisoinv.c (𝜑𝐶 ∈ Cat)
invisoinv.x (𝜑𝑋𝐵)
invisoinv.y (𝜑𝑌𝐵)
invisoinv.f (𝜑𝐹 ∈ (𝑋𝐼𝑌))
Assertion
Ref Expression
invisoinvr (𝜑𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹))

Proof of Theorem invisoinvr
StepHypRef Expression
1 invisoinv.b . . 3 𝐵 = (Base‘𝐶)
2 invisoinv.i . . 3 𝐼 = (Iso‘𝐶)
3 invisoinv.n . . 3 𝑁 = (Inv‘𝐶)
4 invisoinv.c . . 3 (𝜑𝐶 ∈ Cat)
5 invisoinv.x . . 3 (𝜑𝑋𝐵)
6 invisoinv.y . . 3 (𝜑𝑌𝐵)
7 invisoinv.f . . 3 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
81, 2, 3, 4, 5, 6, 7invisoinvl 17697 . 2 (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹)
91, 3, 4, 5, 6invsym 17669 . 2 (𝜑 → (𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹) ↔ ((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹))
108, 9mpbird 257 1 (𝜑𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111   class class class wbr 5089  cfv 6481  (class class class)co 7346  Basecbs 17120  Catccat 17570  Invcinv 17652  Isociso 17653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-cat 17574  df-cid 17575  df-sect 17654  df-inv 17655  df-iso 17656
This theorem is referenced by:  invcoisoid  17699  funciso  17781  fuciso  17885
  Copyright terms: Public domain W3C validator