MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invisoinvr Structured version   Visualization version   GIF version

Theorem invisoinvr 17698
Description: The inverse of an isomorphism is invers to the isomorphism. (Contributed by AV, 9-Apr-2020.)
Hypotheses
Ref Expression
invisoinv.b 𝐵 = (Base‘𝐶)
invisoinv.i 𝐼 = (Iso‘𝐶)
invisoinv.n 𝑁 = (Inv‘𝐶)
invisoinv.c (𝜑𝐶 ∈ Cat)
invisoinv.x (𝜑𝑋𝐵)
invisoinv.y (𝜑𝑌𝐵)
invisoinv.f (𝜑𝐹 ∈ (𝑋𝐼𝑌))
Assertion
Ref Expression
invisoinvr (𝜑𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹))

Proof of Theorem invisoinvr
StepHypRef Expression
1 invisoinv.b . . 3 𝐵 = (Base‘𝐶)
2 invisoinv.i . . 3 𝐼 = (Iso‘𝐶)
3 invisoinv.n . . 3 𝑁 = (Inv‘𝐶)
4 invisoinv.c . . 3 (𝜑𝐶 ∈ Cat)
5 invisoinv.x . . 3 (𝜑𝑋𝐵)
6 invisoinv.y . . 3 (𝜑𝑌𝐵)
7 invisoinv.f . . 3 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
81, 2, 3, 4, 5, 6, 7invisoinvl 17697 . 2 (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹)
91, 3, 4, 5, 6invsym 17669 . 2 (𝜑 → (𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹) ↔ ((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹))
108, 9mpbird 257 1 (𝜑𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  Catccat 17570  Invcinv 17652  Isociso 17653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-cat 17574  df-cid 17575  df-sect 17654  df-inv 17655  df-iso 17656
This theorem is referenced by:  invcoisoid  17699  funciso  17781  fuciso  17885
  Copyright terms: Public domain W3C validator