MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscld4 Structured version   Visualization version   GIF version

Theorem iscld4 21750
Description: A subset is closed iff it contains its own closure. (Contributed by NM, 31-Jan-2008.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
iscld4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝑆) ⊆ 𝑆))

Proof of Theorem iscld4
StepHypRef Expression
1 clscld.1 . . 3 𝑋 = 𝐽
21iscld3 21749 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝑆) = 𝑆))
3 eqss 3903 . . 3 (((cls‘𝐽)‘𝑆) = 𝑆 ↔ (((cls‘𝐽)‘𝑆) ⊆ 𝑆𝑆 ⊆ ((cls‘𝐽)‘𝑆)))
41sscls 21741 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
54biantrud 536 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((cls‘𝐽)‘𝑆) ⊆ 𝑆 ↔ (((cls‘𝐽)‘𝑆) ⊆ 𝑆𝑆 ⊆ ((cls‘𝐽)‘𝑆))))
63, 5bitr4id 294 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((cls‘𝐽)‘𝑆) = 𝑆 ↔ ((cls‘𝐽)‘𝑆) ⊆ 𝑆))
72, 6bitrd 282 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝑆) ⊆ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400   = wceq 1539  wcel 2112  wss 3854   cuni 4791  cfv 6328  Topctop 21578  Clsdccld 21701  clsccl 21703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-ral 3073  df-rex 3074  df-reu 3075  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-op 4522  df-uni 4792  df-int 4832  df-iun 4878  df-iin 4879  df-br 5026  df-opab 5088  df-mpt 5106  df-id 5423  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-top 21579  df-cld 21704  df-cls 21706
This theorem is referenced by:  cncls2  21958  conncompcld  22119  1stckgen  22239  metcld  23991  metsscmetcld  24000
  Copyright terms: Public domain W3C validator