| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > catcinv | Structured version Visualization version GIF version | ||
| Description: The property "𝐹 is an inverse of 𝐺 " in a category of small categories (in a universe). (Contributed by Zhi Wang, 14-Nov-2025.) |
| Ref | Expression |
|---|---|
| catcinv.c | ⊢ 𝐶 = (CatCat‘𝑈) |
| catcinv.n | ⊢ 𝑁 = (Inv‘𝐶) |
| catcinv.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| catcinv.i | ⊢ 𝐼 = (idfunc‘𝑋) |
| catcinv.j | ⊢ 𝐽 = (idfunc‘𝑌) |
| Ref | Expression |
|---|---|
| catcinv | ⊢ (𝐹(𝑋𝑁𝑌)𝐺 ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ ((𝐺 ∘func 𝐹) = 𝐼 ∧ (𝐹 ∘func 𝐺) = 𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catcinv.c | . . . 4 ⊢ 𝐶 = (CatCat‘𝑈) | |
| 2 | catcinv.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 3 | catcinv.i | . . . 4 ⊢ 𝐼 = (idfunc‘𝑋) | |
| 4 | eqid 2730 | . . . 4 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
| 5 | 1, 2, 3, 4 | catcsect 49290 | . . 3 ⊢ (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ (𝐺 ∘func 𝐹) = 𝐼)) |
| 6 | catcinv.j | . . . . 5 ⊢ 𝐽 = (idfunc‘𝑌) | |
| 7 | 1, 2, 6, 4 | catcsect 49290 | . . . 4 ⊢ (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ ((𝐺 ∈ (𝑌𝐻𝑋) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝐹 ∘func 𝐺) = 𝐽)) |
| 8 | ancom 460 | . . . 4 ⊢ ((𝐺 ∈ (𝑌𝐻𝑋) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋))) | |
| 9 | 7, 8 | bianbi 627 | . . 3 ⊢ (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ (𝐹 ∘func 𝐺) = 𝐽)) |
| 10 | 5, 9 | anbi12i 628 | . 2 ⊢ ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ∧ 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) ↔ (((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ (𝐺 ∘func 𝐹) = 𝐼) ∧ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ (𝐹 ∘func 𝐺) = 𝐽))) |
| 11 | catcinv.n | . . 3 ⊢ 𝑁 = (Inv‘𝐶) | |
| 12 | 11, 4 | isinv2 48943 | . 2 ⊢ (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ∧ 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹)) |
| 13 | anandi 676 | . 2 ⊢ (((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ ((𝐺 ∘func 𝐹) = 𝐼 ∧ (𝐹 ∘func 𝐺) = 𝐽)) ↔ (((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ (𝐺 ∘func 𝐹) = 𝐼) ∧ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ (𝐹 ∘func 𝐺) = 𝐽))) | |
| 14 | 10, 12, 13 | 3bitr4i 303 | 1 ⊢ (𝐹(𝑋𝑁𝑌)𝐺 ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ ((𝐺 ∘func 𝐹) = 𝐼 ∧ (𝐹 ∘func 𝐺) = 𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5115 ‘cfv 6519 (class class class)co 7394 Hom chom 17237 Sectcsect 17712 Invcinv 17713 idfunccidfu 17823 ∘func ccofu 17824 CatCatccatc 18066 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-er 8682 df-map 8805 df-ixp 8875 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-9 12267 df-n0 12459 df-z 12546 df-dec 12666 df-uz 12810 df-fz 13482 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17186 df-hom 17250 df-cco 17251 df-cat 17635 df-cid 17636 df-sect 17715 df-inv 17716 df-func 17826 df-idfu 17827 df-cofu 17828 df-catc 18067 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |