Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isisod Structured version   Visualization version   GIF version

Theorem isisod 49012
Description: The predicate "is an isomorphism" (deduction form). (Contributed by Zhi Wang, 16-Sep-2025.)
Hypotheses
Ref Expression
isisod.b 𝐵 = (Base‘𝐶)
isisod.h 𝐻 = (Hom ‘𝐶)
isisod.o · = (comp‘𝐶)
isisod.i 𝐼 = (Iso‘𝐶)
isisod.1 1 = (Id‘𝐶)
isisod.c (𝜑𝐶 ∈ Cat)
isisod.x (𝜑𝑋𝐵)
isisod.y (𝜑𝑌𝐵)
isisod.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
isisod.g (𝜑𝐺 ∈ (𝑌𝐻𝑋))
isisod.gf (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋))
isisod.fg (𝜑 → (𝐹(⟨𝑌, 𝑋· 𝑌)𝐺) = ( 1𝑌))
Assertion
Ref Expression
isisod (𝜑𝐹 ∈ (𝑋𝐼𝑌))

Proof of Theorem isisod
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 isisod.gf . . 3 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋))
2 isisod.fg . . 3 (𝜑 → (𝐹(⟨𝑌, 𝑋· 𝑌)𝐺) = ( 1𝑌))
3 isisod.g . . . 4 (𝜑𝐺 ∈ (𝑌𝐻𝑋))
4 simpr 484 . . . . . . 7 ((𝜑𝑔 = 𝐺) → 𝑔 = 𝐺)
54oveq1d 7364 . . . . . 6 ((𝜑𝑔 = 𝐺) → (𝑔(⟨𝑋, 𝑌· 𝑋)𝐹) = (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹))
65eqeq1d 2731 . . . . 5 ((𝜑𝑔 = 𝐺) → ((𝑔(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋) ↔ (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋)))
74oveq2d 7365 . . . . . 6 ((𝜑𝑔 = 𝐺) → (𝐹(⟨𝑌, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑌, 𝑋· 𝑌)𝐺))
87eqeq1d 2731 . . . . 5 ((𝜑𝑔 = 𝐺) → ((𝐹(⟨𝑌, 𝑋· 𝑌)𝑔) = ( 1𝑌) ↔ (𝐹(⟨𝑌, 𝑋· 𝑌)𝐺) = ( 1𝑌)))
96, 8anbi12d 632 . . . 4 ((𝜑𝑔 = 𝐺) → (((𝑔(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋· 𝑌)𝑔) = ( 1𝑌)) ↔ ((𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋· 𝑌)𝐺) = ( 1𝑌))))
103, 9rspcedv 3570 . . 3 (𝜑 → (((𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋· 𝑌)𝐺) = ( 1𝑌)) → ∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋· 𝑌)𝑔) = ( 1𝑌))))
111, 2, 10mp2and 699 . 2 (𝜑 → ∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋· 𝑌)𝑔) = ( 1𝑌)))
12 isisod.b . . 3 𝐵 = (Base‘𝐶)
13 isisod.h . . 3 𝐻 = (Hom ‘𝐶)
14 isisod.c . . 3 (𝜑𝐶 ∈ Cat)
15 isisod.i . . 3 𝐼 = (Iso‘𝐶)
16 isisod.x . . 3 (𝜑𝑋𝐵)
17 isisod.y . . 3 (𝜑𝑌𝐵)
18 isisod.f . . 3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
19 isisod.1 . . 3 1 = (Id‘𝐶)
20 isisod.o . . . 4 · = (comp‘𝐶)
2120oveqi 7362 . . 3 (⟨𝑋, 𝑌· 𝑋) = (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)
2220oveqi 7362 . . 3 (⟨𝑌, 𝑋· 𝑌) = (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)
2312, 13, 14, 15, 16, 17, 18, 19, 21, 22dfiso2 17679 . 2 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋· 𝑌)𝑔) = ( 1𝑌))))
2411, 23mpbird 257 1 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  cop 4583  cfv 6482  (class class class)co 7349  Basecbs 17120  Hom chom 17172  compcco 17173  Catccat 17570  Idccid 17571  Isociso 17653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-sect 17654  df-inv 17655  df-iso 17656
This theorem is referenced by:  upciclem4  49154
  Copyright terms: Public domain W3C validator