Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isisod Structured version   Visualization version   GIF version

Theorem isisod 48876
Description: The predicate "is an isomorphism" (deduction form). (Contributed by Zhi Wang, 16-Sep-2025.)
Hypotheses
Ref Expression
isisod.b 𝐵 = (Base‘𝐶)
isisod.h 𝐻 = (Hom ‘𝐶)
isisod.o · = (comp‘𝐶)
isisod.i 𝐼 = (Iso‘𝐶)
isisod.1 1 = (Id‘𝐶)
isisod.c (𝜑𝐶 ∈ Cat)
isisod.x (𝜑𝑋𝐵)
isisod.y (𝜑𝑌𝐵)
isisod.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
isisod.g (𝜑𝐺 ∈ (𝑌𝐻𝑋))
isisod.gf (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋))
isisod.fg (𝜑 → (𝐹(⟨𝑌, 𝑋· 𝑌)𝐺) = ( 1𝑌))
Assertion
Ref Expression
isisod (𝜑𝐹 ∈ (𝑋𝐼𝑌))

Proof of Theorem isisod
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 isisod.gf . . 3 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋))
2 isisod.fg . . 3 (𝜑 → (𝐹(⟨𝑌, 𝑋· 𝑌)𝐺) = ( 1𝑌))
3 isisod.g . . . 4 (𝜑𝐺 ∈ (𝑌𝐻𝑋))
4 simpr 484 . . . . . . 7 ((𝜑𝑔 = 𝐺) → 𝑔 = 𝐺)
54oveq1d 7414 . . . . . 6 ((𝜑𝑔 = 𝐺) → (𝑔(⟨𝑋, 𝑌· 𝑋)𝐹) = (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹))
65eqeq1d 2736 . . . . 5 ((𝜑𝑔 = 𝐺) → ((𝑔(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋) ↔ (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋)))
74oveq2d 7415 . . . . . 6 ((𝜑𝑔 = 𝐺) → (𝐹(⟨𝑌, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑌, 𝑋· 𝑌)𝐺))
87eqeq1d 2736 . . . . 5 ((𝜑𝑔 = 𝐺) → ((𝐹(⟨𝑌, 𝑋· 𝑌)𝑔) = ( 1𝑌) ↔ (𝐹(⟨𝑌, 𝑋· 𝑌)𝐺) = ( 1𝑌)))
96, 8anbi12d 632 . . . 4 ((𝜑𝑔 = 𝐺) → (((𝑔(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋· 𝑌)𝑔) = ( 1𝑌)) ↔ ((𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋· 𝑌)𝐺) = ( 1𝑌))))
103, 9rspcedv 3592 . . 3 (𝜑 → (((𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋· 𝑌)𝐺) = ( 1𝑌)) → ∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋· 𝑌)𝑔) = ( 1𝑌))))
111, 2, 10mp2and 699 . 2 (𝜑 → ∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋· 𝑌)𝑔) = ( 1𝑌)))
12 isisod.b . . 3 𝐵 = (Base‘𝐶)
13 isisod.h . . 3 𝐻 = (Hom ‘𝐶)
14 isisod.c . . 3 (𝜑𝐶 ∈ Cat)
15 isisod.i . . 3 𝐼 = (Iso‘𝐶)
16 isisod.x . . 3 (𝜑𝑋𝐵)
17 isisod.y . . 3 (𝜑𝑌𝐵)
18 isisod.f . . 3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
19 isisod.1 . . 3 1 = (Id‘𝐶)
20 isisod.o . . . 4 · = (comp‘𝐶)
2120oveqi 7412 . . 3 (⟨𝑋, 𝑌· 𝑋) = (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)
2220oveqi 7412 . . 3 (⟨𝑌, 𝑋· 𝑌) = (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)
2312, 13, 14, 15, 16, 17, 18, 19, 21, 22dfiso2 17770 . 2 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋· 𝑌)𝑔) = ( 1𝑌))))
2411, 23mpbird 257 1 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wrex 3059  cop 4605  cfv 6527  (class class class)co 7399  Basecbs 17213  Hom chom 17267  compcco 17268  Catccat 17661  Idccid 17662  Isociso 17744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-ov 7402  df-oprab 7403  df-mpo 7404  df-1st 7982  df-2nd 7983  df-sect 17745  df-inv 17746  df-iso 17747
This theorem is referenced by:  upciclem4  48925
  Copyright terms: Public domain W3C validator