![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isisod | Structured version Visualization version GIF version |
Description: The predicate "is an isomorphism" (deduction form). (Contributed by Zhi Wang, 16-Sep-2025.) |
Ref | Expression |
---|---|
isisod.b | ⊢ 𝐵 = (Base‘𝐶) |
isisod.h | ⊢ 𝐻 = (Hom ‘𝐶) |
isisod.o | ⊢ · = (comp‘𝐶) |
isisod.i | ⊢ 𝐼 = (Iso‘𝐶) |
isisod.1 | ⊢ 1 = (Id‘𝐶) |
isisod.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
isisod.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
isisod.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
isisod.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
isisod.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑋)) |
isisod.gf | ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋)) |
isisod.fg | ⊢ (𝜑 → (𝐹(〈𝑌, 𝑋〉 · 𝑌)𝐺) = ( 1 ‘𝑌)) |
Ref | Expression |
---|---|
isisod | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isisod.gf | . . 3 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋)) | |
2 | isisod.fg | . . 3 ⊢ (𝜑 → (𝐹(〈𝑌, 𝑋〉 · 𝑌)𝐺) = ( 1 ‘𝑌)) | |
3 | isisod.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑋)) | |
4 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑔 = 𝐺) → 𝑔 = 𝐺) | |
5 | 4 | oveq1d 7467 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (𝑔(〈𝑋, 𝑌〉 · 𝑋)𝐹) = (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹)) |
6 | 5 | eqeq1d 2742 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 = 𝐺) → ((𝑔(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋) ↔ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋))) |
7 | 4 | oveq2d 7468 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (𝐹(〈𝑌, 𝑋〉 · 𝑌)𝑔) = (𝐹(〈𝑌, 𝑋〉 · 𝑌)𝐺)) |
8 | 7 | eqeq1d 2742 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 = 𝐺) → ((𝐹(〈𝑌, 𝑋〉 · 𝑌)𝑔) = ( 1 ‘𝑌) ↔ (𝐹(〈𝑌, 𝑋〉 · 𝑌)𝐺) = ( 1 ‘𝑌))) |
9 | 6, 8 | anbi12d 631 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (((𝑔(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋) ∧ (𝐹(〈𝑌, 𝑋〉 · 𝑌)𝑔) = ( 1 ‘𝑌)) ↔ ((𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋) ∧ (𝐹(〈𝑌, 𝑋〉 · 𝑌)𝐺) = ( 1 ‘𝑌)))) |
10 | 3, 9 | rspcedv 3629 | . . 3 ⊢ (𝜑 → (((𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋) ∧ (𝐹(〈𝑌, 𝑋〉 · 𝑌)𝐺) = ( 1 ‘𝑌)) → ∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋) ∧ (𝐹(〈𝑌, 𝑋〉 · 𝑌)𝑔) = ( 1 ‘𝑌)))) |
11 | 1, 2, 10 | mp2and 698 | . 2 ⊢ (𝜑 → ∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋) ∧ (𝐹(〈𝑌, 𝑋〉 · 𝑌)𝑔) = ( 1 ‘𝑌))) |
12 | isisod.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
13 | isisod.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
14 | isisod.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
15 | isisod.i | . . 3 ⊢ 𝐼 = (Iso‘𝐶) | |
16 | isisod.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
17 | isisod.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
18 | isisod.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
19 | isisod.1 | . . 3 ⊢ 1 = (Id‘𝐶) | |
20 | isisod.o | . . . 4 ⊢ · = (comp‘𝐶) | |
21 | 20 | oveqi 7465 | . . 3 ⊢ (〈𝑋, 𝑌〉 · 𝑋) = (〈𝑋, 𝑌〉(comp‘𝐶)𝑋) |
22 | 20 | oveqi 7465 | . . 3 ⊢ (〈𝑌, 𝑋〉 · 𝑌) = (〈𝑌, 𝑋〉(comp‘𝐶)𝑌) |
23 | 12, 13, 14, 15, 16, 17, 18, 19, 21, 22 | dfiso2 17854 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋) ∧ (𝐹(〈𝑌, 𝑋〉 · 𝑌)𝑔) = ( 1 ‘𝑌)))) |
24 | 11, 23 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 〈cop 4655 ‘cfv 6577 (class class class)co 7452 Basecbs 17279 Hom chom 17343 compcco 17344 Catccat 17743 Idccid 17744 Isociso 17828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5305 ax-sep 5319 ax-nul 5326 ax-pow 5385 ax-pr 5449 ax-un 7774 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3445 df-v 3491 df-sbc 3806 df-csb 3923 df-dif 3980 df-un 3982 df-in 3984 df-ss 3994 df-nul 4354 df-if 4550 df-pw 4625 df-sn 4650 df-pr 4652 df-op 4656 df-uni 4934 df-iun 5019 df-br 5169 df-opab 5231 df-mpt 5252 df-id 5595 df-xp 5708 df-rel 5709 df-cnv 5710 df-co 5711 df-dm 5712 df-rn 5713 df-res 5714 df-ima 5715 df-iota 6529 df-fun 6579 df-fn 6580 df-f 6581 df-f1 6582 df-fo 6583 df-f1o 6584 df-fv 6585 df-ov 7455 df-oprab 7456 df-mpo 7457 df-1st 8034 df-2nd 8035 df-sect 17829 df-inv 17830 df-iso 17831 |
This theorem is referenced by: upciclem4 48779 |
Copyright terms: Public domain | W3C validator |