| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isisod | Structured version Visualization version GIF version | ||
| Description: The predicate "is an isomorphism" (deduction form). (Contributed by Zhi Wang, 16-Sep-2025.) |
| Ref | Expression |
|---|---|
| isisod.b | ⊢ 𝐵 = (Base‘𝐶) |
| isisod.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| isisod.o | ⊢ · = (comp‘𝐶) |
| isisod.i | ⊢ 𝐼 = (Iso‘𝐶) |
| isisod.1 | ⊢ 1 = (Id‘𝐶) |
| isisod.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| isisod.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| isisod.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| isisod.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
| isisod.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑋)) |
| isisod.gf | ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋)) |
| isisod.fg | ⊢ (𝜑 → (𝐹(〈𝑌, 𝑋〉 · 𝑌)𝐺) = ( 1 ‘𝑌)) |
| Ref | Expression |
|---|---|
| isisod | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isisod.gf | . . 3 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋)) | |
| 2 | isisod.fg | . . 3 ⊢ (𝜑 → (𝐹(〈𝑌, 𝑋〉 · 𝑌)𝐺) = ( 1 ‘𝑌)) | |
| 3 | isisod.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑋)) | |
| 4 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑔 = 𝐺) → 𝑔 = 𝐺) | |
| 5 | 4 | oveq1d 7356 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (𝑔(〈𝑋, 𝑌〉 · 𝑋)𝐹) = (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹)) |
| 6 | 5 | eqeq1d 2733 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 = 𝐺) → ((𝑔(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋) ↔ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋))) |
| 7 | 4 | oveq2d 7357 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (𝐹(〈𝑌, 𝑋〉 · 𝑌)𝑔) = (𝐹(〈𝑌, 𝑋〉 · 𝑌)𝐺)) |
| 8 | 7 | eqeq1d 2733 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 = 𝐺) → ((𝐹(〈𝑌, 𝑋〉 · 𝑌)𝑔) = ( 1 ‘𝑌) ↔ (𝐹(〈𝑌, 𝑋〉 · 𝑌)𝐺) = ( 1 ‘𝑌))) |
| 9 | 6, 8 | anbi12d 632 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (((𝑔(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋) ∧ (𝐹(〈𝑌, 𝑋〉 · 𝑌)𝑔) = ( 1 ‘𝑌)) ↔ ((𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋) ∧ (𝐹(〈𝑌, 𝑋〉 · 𝑌)𝐺) = ( 1 ‘𝑌)))) |
| 10 | 3, 9 | rspcedv 3565 | . . 3 ⊢ (𝜑 → (((𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋) ∧ (𝐹(〈𝑌, 𝑋〉 · 𝑌)𝐺) = ( 1 ‘𝑌)) → ∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋) ∧ (𝐹(〈𝑌, 𝑋〉 · 𝑌)𝑔) = ( 1 ‘𝑌)))) |
| 11 | 1, 2, 10 | mp2and 699 | . 2 ⊢ (𝜑 → ∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋) ∧ (𝐹(〈𝑌, 𝑋〉 · 𝑌)𝑔) = ( 1 ‘𝑌))) |
| 12 | isisod.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 13 | isisod.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 14 | isisod.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 15 | isisod.i | . . 3 ⊢ 𝐼 = (Iso‘𝐶) | |
| 16 | isisod.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 17 | isisod.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 18 | isisod.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
| 19 | isisod.1 | . . 3 ⊢ 1 = (Id‘𝐶) | |
| 20 | isisod.o | . . . 4 ⊢ · = (comp‘𝐶) | |
| 21 | 20 | oveqi 7354 | . . 3 ⊢ (〈𝑋, 𝑌〉 · 𝑋) = (〈𝑋, 𝑌〉(comp‘𝐶)𝑋) |
| 22 | 20 | oveqi 7354 | . . 3 ⊢ (〈𝑌, 𝑋〉 · 𝑌) = (〈𝑌, 𝑋〉(comp‘𝐶)𝑌) |
| 23 | 12, 13, 14, 15, 16, 17, 18, 19, 21, 22 | dfiso2 17674 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋) ∧ (𝐹(〈𝑌, 𝑋〉 · 𝑌)𝑔) = ( 1 ‘𝑌)))) |
| 24 | 11, 23 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 〈cop 4577 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 Hom chom 17167 compcco 17168 Catccat 17565 Idccid 17566 Isociso 17648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-sect 17649 df-inv 17650 df-iso 17651 |
| This theorem is referenced by: upciclem4 49201 |
| Copyright terms: Public domain | W3C validator |