Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme50ltrn Structured version   Visualization version   GIF version

Theorem cdleme50ltrn 39732
Description: Part of proof of Lemma E in [Crawley] p. 113. 𝐹 is a lattice translation. TODO: fix comment. (Contributed by NM, 10-Apr-2013.)
Hypotheses
Ref Expression
cdlemef50.b 𝐡 = (Baseβ€˜πΎ)
cdlemef50.l ≀ = (leβ€˜πΎ)
cdlemef50.j ∨ = (joinβ€˜πΎ)
cdlemef50.m ∧ = (meetβ€˜πΎ)
cdlemef50.a 𝐴 = (Atomsβ€˜πΎ)
cdlemef50.h 𝐻 = (LHypβ€˜πΎ)
cdlemef50.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdlemef50.d 𝐷 = ((𝑑 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑑) ∧ π‘Š)))
cdlemefs50.e 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑑) ∧ π‘Š)))
cdlemef50.f 𝐹 = (π‘₯ ∈ 𝐡 ↦ if((𝑃 β‰  𝑄 ∧ Β¬ π‘₯ ≀ π‘Š), (℩𝑧 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑧 = (if(𝑠 ≀ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑦 = 𝐸)), ⦋𝑠 / π‘‘β¦Œπ·) ∨ (π‘₯ ∧ π‘Š)))), π‘₯))
cdleme50ltrn.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
cdleme50ltrn (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ 𝐹 ∈ 𝑇)
Distinct variable groups:   𝑑,𝑠,π‘₯,𝑦,𝑧, ∧   ∨ ,𝑠,𝑑,π‘₯,𝑦,𝑧   ≀ ,𝑠,𝑑,π‘₯,𝑦,𝑧   𝐴,𝑠,𝑑,π‘₯,𝑦,𝑧   𝐡,𝑠,𝑑,π‘₯,𝑦,𝑧   𝐷,𝑠,π‘₯,𝑦,𝑧   π‘₯,𝐸,𝑦,𝑧   𝐻,𝑠,𝑑,π‘₯,𝑦,𝑧   𝐾,𝑠,𝑑,π‘₯,𝑦,𝑧   𝑃,𝑠,𝑑,π‘₯,𝑦,𝑧   𝑄,𝑠,𝑑,π‘₯,𝑦,𝑧   π‘ˆ,𝑠,𝑑,π‘₯,𝑦,𝑧   π‘Š,𝑠,𝑑,π‘₯,𝑦,𝑧
Allowed substitution hints:   𝐷(𝑑)   𝑇(π‘₯,𝑦,𝑧,𝑑,𝑠)   𝐸(𝑑,𝑠)   𝐹(π‘₯,𝑦,𝑧,𝑑,𝑠)

Proof of Theorem cdleme50ltrn
Dummy variables 𝑒 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdlemef50.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 cdlemef50.l . . 3 ≀ = (leβ€˜πΎ)
3 cdlemef50.j . . 3 ∨ = (joinβ€˜πΎ)
4 cdlemef50.m . . 3 ∧ = (meetβ€˜πΎ)
5 cdlemef50.a . . 3 𝐴 = (Atomsβ€˜πΎ)
6 cdlemef50.h . . 3 𝐻 = (LHypβ€˜πΎ)
7 cdlemef50.u . . 3 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
8 cdlemef50.d . . 3 𝐷 = ((𝑑 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑑) ∧ π‘Š)))
9 cdlemefs50.e . . 3 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑑) ∧ π‘Š)))
10 cdlemef50.f . . 3 𝐹 = (π‘₯ ∈ 𝐡 ↦ if((𝑃 β‰  𝑄 ∧ Β¬ π‘₯ ≀ π‘Š), (℩𝑧 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑧 = (if(𝑠 ≀ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑦 = 𝐸)), ⦋𝑠 / π‘‘β¦Œπ·) ∨ (π‘₯ ∧ π‘Š)))), π‘₯))
11 eqid 2731 . . 3 ((LDilβ€˜πΎ)β€˜π‘Š) = ((LDilβ€˜πΎ)β€˜π‘Š)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cdleme50ldil 39723 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ 𝐹 ∈ ((LDilβ€˜πΎ)β€˜π‘Š))
13 simp1 1135 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴) ∧ (Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑒 ≀ π‘Š)) β†’ ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)))
14 simp2l 1198 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴) ∧ (Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑒 ≀ π‘Š)) β†’ 𝑑 ∈ 𝐴)
15 simp3l 1200 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴) ∧ (Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑒 ≀ π‘Š)) β†’ Β¬ 𝑑 ≀ π‘Š)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10cdleme50trn123 39729 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑑 ∈ 𝐴 ∧ Β¬ 𝑑 ≀ π‘Š)) β†’ ((𝑑 ∨ (πΉβ€˜π‘‘)) ∧ π‘Š) = π‘ˆ)
1713, 14, 15, 16syl12anc 834 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴) ∧ (Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑒 ≀ π‘Š)) β†’ ((𝑑 ∨ (πΉβ€˜π‘‘)) ∧ π‘Š) = π‘ˆ)
18 simp2r 1199 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴) ∧ (Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑒 ≀ π‘Š)) β†’ 𝑒 ∈ 𝐴)
19 simp3r 1201 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴) ∧ (Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑒 ≀ π‘Š)) β†’ Β¬ 𝑒 ≀ π‘Š)
201, 2, 3, 4, 5, 6, 7, 8, 9, 10cdleme50trn123 39729 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑒 ∈ 𝐴 ∧ Β¬ 𝑒 ≀ π‘Š)) β†’ ((𝑒 ∨ (πΉβ€˜π‘’)) ∧ π‘Š) = π‘ˆ)
2113, 18, 19, 20syl12anc 834 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴) ∧ (Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑒 ≀ π‘Š)) β†’ ((𝑒 ∨ (πΉβ€˜π‘’)) ∧ π‘Š) = π‘ˆ)
2217, 21eqtr4d 2774 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴) ∧ (Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑒 ≀ π‘Š)) β†’ ((𝑑 ∨ (πΉβ€˜π‘‘)) ∧ π‘Š) = ((𝑒 ∨ (πΉβ€˜π‘’)) ∧ π‘Š))
23223exp 1118 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ ((𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴) β†’ ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑒 ≀ π‘Š) β†’ ((𝑑 ∨ (πΉβ€˜π‘‘)) ∧ π‘Š) = ((𝑒 ∨ (πΉβ€˜π‘’)) ∧ π‘Š))))
2423ralrimivv 3197 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ βˆ€π‘‘ ∈ 𝐴 βˆ€π‘’ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑒 ≀ π‘Š) β†’ ((𝑑 ∨ (πΉβ€˜π‘‘)) ∧ π‘Š) = ((𝑒 ∨ (πΉβ€˜π‘’)) ∧ π‘Š)))
25 cdleme50ltrn.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
262, 3, 4, 5, 6, 11, 25isltrn 39294 . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (𝐹 ∈ 𝑇 ↔ (𝐹 ∈ ((LDilβ€˜πΎ)β€˜π‘Š) ∧ βˆ€π‘‘ ∈ 𝐴 βˆ€π‘’ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑒 ≀ π‘Š) β†’ ((𝑑 ∨ (πΉβ€˜π‘‘)) ∧ π‘Š) = ((𝑒 ∨ (πΉβ€˜π‘’)) ∧ π‘Š)))))
27263ad2ant1 1132 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (𝐹 ∈ 𝑇 ↔ (𝐹 ∈ ((LDilβ€˜πΎ)β€˜π‘Š) ∧ βˆ€π‘‘ ∈ 𝐴 βˆ€π‘’ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑒 ≀ π‘Š) β†’ ((𝑑 ∨ (πΉβ€˜π‘‘)) ∧ π‘Š) = ((𝑒 ∨ (πΉβ€˜π‘’)) ∧ π‘Š)))))
2812, 24, 27mpbir2and 710 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ 𝐹 ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   β‰  wne 2939  βˆ€wral 3060  β¦‹csb 3894  ifcif 4529   class class class wbr 5149   ↦ cmpt 5232  β€˜cfv 6544  β„©crio 7367  (class class class)co 7412  Basecbs 17149  lecple 17209  joincjn 18269  meetcmee 18270  Atomscatm 38437  HLchlt 38524  LHypclh 39159  LDilcldil 39275  LTrncltrn 39276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-riotaBAD 38127
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7978  df-2nd 7979  df-undef 8261  df-map 8825  df-proset 18253  df-poset 18271  df-plt 18288  df-lub 18304  df-glb 18305  df-join 18306  df-meet 18307  df-p0 18383  df-p1 18384  df-lat 18390  df-clat 18457  df-oposet 38350  df-ol 38352  df-oml 38353  df-covers 38440  df-ats 38441  df-atl 38472  df-cvlat 38496  df-hlat 38525  df-llines 38673  df-lplanes 38674  df-lvols 38675  df-lines 38676  df-psubsp 38678  df-pmap 38679  df-padd 38971  df-lhyp 39163  df-laut 39164  df-ldil 39279  df-ltrn 39280
This theorem is referenced by:  cdleme51finvtrN  39733  cdleme50ex  39734  cdlemg1a  39745  cdlemg1ltrnlem  39749
  Copyright terms: Public domain W3C validator