Step | Hyp | Ref
| Expression |
1 | | cdlemef50.b |
. . 3
⊢ 𝐵 = (Base‘𝐾) |
2 | | cdlemef50.l |
. . 3
⊢ ≤ =
(le‘𝐾) |
3 | | cdlemef50.j |
. . 3
⊢ ∨ =
(join‘𝐾) |
4 | | cdlemef50.m |
. . 3
⊢ ∧ =
(meet‘𝐾) |
5 | | cdlemef50.a |
. . 3
⊢ 𝐴 = (Atoms‘𝐾) |
6 | | cdlemef50.h |
. . 3
⊢ 𝐻 = (LHyp‘𝐾) |
7 | | cdlemef50.u |
. . 3
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
8 | | cdlemef50.d |
. . 3
⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
9 | | cdlemefs50.e |
. . 3
⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
10 | | cdlemef50.f |
. . 3
⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) |
11 | | eqid 2738 |
. . 3
⊢
((LDil‘𝐾)‘𝑊) = ((LDil‘𝐾)‘𝑊) |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11 | cdleme50ldil 38489 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐹 ∈ ((LDil‘𝐾)‘𝑊)) |
13 | | simp1 1134 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴) ∧ (¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊)) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) |
14 | | simp2l 1197 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴) ∧ (¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊)) → 𝑑 ∈ 𝐴) |
15 | | simp3l 1199 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴) ∧ (¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊)) → ¬ 𝑑 ≤ 𝑊) |
16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | cdleme50trn123 38495 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑑 ∈ 𝐴 ∧ ¬ 𝑑 ≤ 𝑊)) → ((𝑑 ∨ (𝐹‘𝑑)) ∧ 𝑊) = 𝑈) |
17 | 13, 14, 15, 16 | syl12anc 833 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴) ∧ (¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊)) → ((𝑑 ∨ (𝐹‘𝑑)) ∧ 𝑊) = 𝑈) |
18 | | simp2r 1198 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴) ∧ (¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊)) → 𝑒 ∈ 𝐴) |
19 | | simp3r 1200 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴) ∧ (¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊)) → ¬ 𝑒 ≤ 𝑊) |
20 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | cdleme50trn123 38495 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑒 ∈ 𝐴 ∧ ¬ 𝑒 ≤ 𝑊)) → ((𝑒 ∨ (𝐹‘𝑒)) ∧ 𝑊) = 𝑈) |
21 | 13, 18, 19, 20 | syl12anc 833 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴) ∧ (¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊)) → ((𝑒 ∨ (𝐹‘𝑒)) ∧ 𝑊) = 𝑈) |
22 | 17, 21 | eqtr4d 2781 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴) ∧ (¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊)) → ((𝑑 ∨ (𝐹‘𝑑)) ∧ 𝑊) = ((𝑒 ∨ (𝐹‘𝑒)) ∧ 𝑊)) |
23 | 22 | 3exp 1117 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴) → ((¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊) → ((𝑑 ∨ (𝐹‘𝑑)) ∧ 𝑊) = ((𝑒 ∨ (𝐹‘𝑒)) ∧ 𝑊)))) |
24 | 23 | ralrimivv 3113 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ∀𝑑 ∈ 𝐴 ∀𝑒 ∈ 𝐴 ((¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊) → ((𝑑 ∨ (𝐹‘𝑑)) ∧ 𝑊) = ((𝑒 ∨ (𝐹‘𝑒)) ∧ 𝑊))) |
25 | | cdleme50ltrn.t |
. . . 4
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
26 | 2, 3, 4, 5, 6, 11,
25 | isltrn 38060 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝑇 ↔ (𝐹 ∈ ((LDil‘𝐾)‘𝑊) ∧ ∀𝑑 ∈ 𝐴 ∀𝑒 ∈ 𝐴 ((¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊) → ((𝑑 ∨ (𝐹‘𝑑)) ∧ 𝑊) = ((𝑒 ∨ (𝐹‘𝑒)) ∧ 𝑊))))) |
27 | 26 | 3ad2ant1 1131 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐹 ∈ 𝑇 ↔ (𝐹 ∈ ((LDil‘𝐾)‘𝑊) ∧ ∀𝑑 ∈ 𝐴 ∀𝑒 ∈ 𝐴 ((¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊) → ((𝑑 ∨ (𝐹‘𝑑)) ∧ 𝑊) = ((𝑒 ∨ (𝐹‘𝑒)) ∧ 𝑊))))) |
28 | 12, 24, 27 | mpbir2and 709 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐹 ∈ 𝑇) |