| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cdlemef50.b | . . 3
⊢ 𝐵 = (Base‘𝐾) | 
| 2 |  | cdlemef50.l | . . 3
⊢  ≤ =
(le‘𝐾) | 
| 3 |  | cdlemef50.j | . . 3
⊢  ∨ =
(join‘𝐾) | 
| 4 |  | cdlemef50.m | . . 3
⊢  ∧ =
(meet‘𝐾) | 
| 5 |  | cdlemef50.a | . . 3
⊢ 𝐴 = (Atoms‘𝐾) | 
| 6 |  | cdlemef50.h | . . 3
⊢ 𝐻 = (LHyp‘𝐾) | 
| 7 |  | cdlemef50.u | . . 3
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | 
| 8 |  | cdlemef50.d | . . 3
⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) | 
| 9 |  | cdlemefs50.e | . . 3
⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) | 
| 10 |  | cdlemef50.f | . . 3
⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) | 
| 11 |  | eqid 2737 | . . 3
⊢
((LDil‘𝐾)‘𝑊) = ((LDil‘𝐾)‘𝑊) | 
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11 | cdleme50ldil 40550 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐹 ∈ ((LDil‘𝐾)‘𝑊)) | 
| 13 |  | simp1 1137 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴) ∧ (¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊)) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) | 
| 14 |  | simp2l 1200 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴) ∧ (¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊)) → 𝑑 ∈ 𝐴) | 
| 15 |  | simp3l 1202 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴) ∧ (¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊)) → ¬ 𝑑 ≤ 𝑊) | 
| 16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | cdleme50trn123 40556 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑑 ∈ 𝐴 ∧ ¬ 𝑑 ≤ 𝑊)) → ((𝑑 ∨ (𝐹‘𝑑)) ∧ 𝑊) = 𝑈) | 
| 17 | 13, 14, 15, 16 | syl12anc 837 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴) ∧ (¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊)) → ((𝑑 ∨ (𝐹‘𝑑)) ∧ 𝑊) = 𝑈) | 
| 18 |  | simp2r 1201 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴) ∧ (¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊)) → 𝑒 ∈ 𝐴) | 
| 19 |  | simp3r 1203 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴) ∧ (¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊)) → ¬ 𝑒 ≤ 𝑊) | 
| 20 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | cdleme50trn123 40556 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑒 ∈ 𝐴 ∧ ¬ 𝑒 ≤ 𝑊)) → ((𝑒 ∨ (𝐹‘𝑒)) ∧ 𝑊) = 𝑈) | 
| 21 | 13, 18, 19, 20 | syl12anc 837 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴) ∧ (¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊)) → ((𝑒 ∨ (𝐹‘𝑒)) ∧ 𝑊) = 𝑈) | 
| 22 | 17, 21 | eqtr4d 2780 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴) ∧ (¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊)) → ((𝑑 ∨ (𝐹‘𝑑)) ∧ 𝑊) = ((𝑒 ∨ (𝐹‘𝑒)) ∧ 𝑊)) | 
| 23 | 22 | 3exp 1120 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴) → ((¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊) → ((𝑑 ∨ (𝐹‘𝑑)) ∧ 𝑊) = ((𝑒 ∨ (𝐹‘𝑒)) ∧ 𝑊)))) | 
| 24 | 23 | ralrimivv 3200 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ∀𝑑 ∈ 𝐴 ∀𝑒 ∈ 𝐴 ((¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊) → ((𝑑 ∨ (𝐹‘𝑑)) ∧ 𝑊) = ((𝑒 ∨ (𝐹‘𝑒)) ∧ 𝑊))) | 
| 25 |  | cdleme50ltrn.t | . . . 4
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| 26 | 2, 3, 4, 5, 6, 11,
25 | isltrn 40121 | . . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝑇 ↔ (𝐹 ∈ ((LDil‘𝐾)‘𝑊) ∧ ∀𝑑 ∈ 𝐴 ∀𝑒 ∈ 𝐴 ((¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊) → ((𝑑 ∨ (𝐹‘𝑑)) ∧ 𝑊) = ((𝑒 ∨ (𝐹‘𝑒)) ∧ 𝑊))))) | 
| 27 | 26 | 3ad2ant1 1134 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐹 ∈ 𝑇 ↔ (𝐹 ∈ ((LDil‘𝐾)‘𝑊) ∧ ∀𝑑 ∈ 𝐴 ∀𝑒 ∈ 𝐴 ((¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊) → ((𝑑 ∨ (𝐹‘𝑑)) ∧ 𝑊) = ((𝑒 ∨ (𝐹‘𝑒)) ∧ 𝑊))))) | 
| 28 | 12, 24, 27 | mpbir2and 713 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐹 ∈ 𝑇) |