![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > istendod | Structured version Visualization version GIF version |
Description: Deduce the predicate "is a trace-preserving endomorphism". (Contributed by NM, 9-Jun-2013.) |
Ref | Expression |
---|---|
tendoset.l | ⊢ ≤ = (le‘𝐾) |
tendoset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
tendoset.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
tendoset.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
tendoset.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
istendod.1 | ⊢ (𝜑 → (𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻)) |
istendod.2 | ⊢ (𝜑 → 𝑆:𝑇⟶𝑇) |
istendod.3 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) → (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔))) |
istendod.4 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)) |
Ref | Expression |
---|---|
istendod | ⊢ (𝜑 → 𝑆 ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istendod.2 | . 2 ⊢ (𝜑 → 𝑆:𝑇⟶𝑇) | |
2 | istendod.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) → (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔))) | |
3 | 2 | 3expb 1121 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇)) → (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔))) |
4 | 3 | ralrimivva 3201 | . 2 ⊢ (𝜑 → ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔))) |
5 | istendod.4 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)) | |
6 | 5 | ralrimiva 3147 | . 2 ⊢ (𝜑 → ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)) |
7 | istendod.1 | . . 3 ⊢ (𝜑 → (𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻)) | |
8 | tendoset.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
9 | tendoset.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
10 | tendoset.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
11 | tendoset.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
12 | tendoset.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
13 | 8, 9, 10, 11, 12 | istendo 39620 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ 𝐸 ↔ (𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)))) |
14 | 7, 13 | syl 17 | . 2 ⊢ (𝜑 → (𝑆 ∈ 𝐸 ↔ (𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)))) |
15 | 1, 4, 6, 14 | mpbir3and 1343 | 1 ⊢ (𝜑 → 𝑆 ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∀wral 3062 class class class wbr 5148 ∘ ccom 5680 ⟶wf 6537 ‘cfv 6541 lecple 17201 LHypclh 38844 LTrncltrn 38961 trLctrl 39018 TEndoctendo 39612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7409 df-oprab 7410 df-mpo 7411 df-map 8819 df-tendo 39615 |
This theorem is referenced by: tendoidcl 39629 tendococl 39632 tendoplcl 39641 tendo0cl 39650 tendoicl 39656 cdlemk56 39831 |
Copyright terms: Public domain | W3C validator |