| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > istendod | Structured version Visualization version GIF version | ||
| Description: Deduce the predicate "is a trace-preserving endomorphism". (Contributed by NM, 9-Jun-2013.) |
| Ref | Expression |
|---|---|
| tendoset.l | ⊢ ≤ = (le‘𝐾) |
| tendoset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| tendoset.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| tendoset.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| tendoset.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| istendod.1 | ⊢ (𝜑 → (𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻)) |
| istendod.2 | ⊢ (𝜑 → 𝑆:𝑇⟶𝑇) |
| istendod.3 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) → (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔))) |
| istendod.4 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)) |
| Ref | Expression |
|---|---|
| istendod | ⊢ (𝜑 → 𝑆 ∈ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istendod.2 | . 2 ⊢ (𝜑 → 𝑆:𝑇⟶𝑇) | |
| 2 | istendod.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) → (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔))) | |
| 3 | 2 | 3expb 1120 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇)) → (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔))) |
| 4 | 3 | ralrimivva 3181 | . 2 ⊢ (𝜑 → ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔))) |
| 5 | istendod.4 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)) | |
| 6 | 5 | ralrimiva 3126 | . 2 ⊢ (𝜑 → ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)) |
| 7 | istendod.1 | . . 3 ⊢ (𝜑 → (𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻)) | |
| 8 | tendoset.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 9 | tendoset.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 10 | tendoset.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 11 | tendoset.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 12 | tendoset.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 13 | 8, 9, 10, 11, 12 | istendo 40761 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ 𝐸 ↔ (𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)))) |
| 14 | 7, 13 | syl 17 | . 2 ⊢ (𝜑 → (𝑆 ∈ 𝐸 ↔ (𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)))) |
| 15 | 1, 4, 6, 14 | mpbir3and 1343 | 1 ⊢ (𝜑 → 𝑆 ∈ 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 class class class wbr 5110 ∘ ccom 5645 ⟶wf 6510 ‘cfv 6514 lecple 17234 LHypclh 39985 LTrncltrn 40102 trLctrl 40159 TEndoctendo 40753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-tendo 40756 |
| This theorem is referenced by: tendoidcl 40770 tendococl 40773 tendoplcl 40782 tendo0cl 40791 tendoicl 40797 cdlemk56 40972 |
| Copyright terms: Public domain | W3C validator |