![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > istendod | Structured version Visualization version GIF version |
Description: Deduce the predicate "is a trace-preserving endomorphism". (Contributed by NM, 9-Jun-2013.) |
Ref | Expression |
---|---|
tendoset.l | ⊢ ≤ = (le‘𝐾) |
tendoset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
tendoset.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
tendoset.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
tendoset.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
istendod.1 | ⊢ (𝜑 → (𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻)) |
istendod.2 | ⊢ (𝜑 → 𝑆:𝑇⟶𝑇) |
istendod.3 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) → (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔))) |
istendod.4 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)) |
Ref | Expression |
---|---|
istendod | ⊢ (𝜑 → 𝑆 ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istendod.2 | . 2 ⊢ (𝜑 → 𝑆:𝑇⟶𝑇) | |
2 | istendod.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) → (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔))) | |
3 | 2 | 3expb 1119 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇)) → (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔))) |
4 | 3 | ralrimivva 3200 | . 2 ⊢ (𝜑 → ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔))) |
5 | istendod.4 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)) | |
6 | 5 | ralrimiva 3144 | . 2 ⊢ (𝜑 → ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)) |
7 | istendod.1 | . . 3 ⊢ (𝜑 → (𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻)) | |
8 | tendoset.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
9 | tendoset.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
10 | tendoset.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
11 | tendoset.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
12 | tendoset.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
13 | 8, 9, 10, 11, 12 | istendo 40743 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ 𝐸 ↔ (𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)))) |
14 | 7, 13 | syl 17 | . 2 ⊢ (𝜑 → (𝑆 ∈ 𝐸 ↔ (𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)))) |
15 | 1, 4, 6, 14 | mpbir3and 1341 | 1 ⊢ (𝜑 → 𝑆 ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 class class class wbr 5148 ∘ ccom 5693 ⟶wf 6559 ‘cfv 6563 lecple 17305 LHypclh 39967 LTrncltrn 40084 trLctrl 40141 TEndoctendo 40735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8867 df-tendo 40738 |
This theorem is referenced by: tendoidcl 40752 tendococl 40755 tendoplcl 40764 tendo0cl 40773 tendoicl 40779 cdlemk56 40954 |
Copyright terms: Public domain | W3C validator |