Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istendod Structured version   Visualization version   GIF version

Theorem istendod 40871
Description: Deduce the predicate "is a trace-preserving endomorphism". (Contributed by NM, 9-Jun-2013.)
Hypotheses
Ref Expression
tendoset.l = (le‘𝐾)
tendoset.h 𝐻 = (LHyp‘𝐾)
tendoset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoset.r 𝑅 = ((trL‘𝐾)‘𝑊)
tendoset.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
istendod.1 (𝜑 → (𝐾𝑉𝑊𝐻))
istendod.2 (𝜑𝑆:𝑇𝑇)
istendod.3 ((𝜑𝑓𝑇𝑔𝑇) → (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)))
istendod.4 ((𝜑𝑓𝑇) → (𝑅‘(𝑆𝑓)) (𝑅𝑓))
Assertion
Ref Expression
istendod (𝜑𝑆𝐸)
Distinct variable groups:   𝑓,𝑔,𝐾   𝑇,𝑓,𝑔   𝑓,𝑊,𝑔   𝑆,𝑓,𝑔   ,𝑓   𝑅,𝑓   𝜑,𝑓,𝑔
Allowed substitution hints:   𝑅(𝑔)   𝐸(𝑓,𝑔)   𝐻(𝑓,𝑔)   (𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem istendod
StepHypRef Expression
1 istendod.2 . 2 (𝜑𝑆:𝑇𝑇)
2 istendod.3 . . . 4 ((𝜑𝑓𝑇𝑔𝑇) → (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)))
323expb 1120 . . 3 ((𝜑 ∧ (𝑓𝑇𝑔𝑇)) → (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)))
43ralrimivva 3177 . 2 (𝜑 → ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)))
5 istendod.4 . . 3 ((𝜑𝑓𝑇) → (𝑅‘(𝑆𝑓)) (𝑅𝑓))
65ralrimiva 3126 . 2 (𝜑 → ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓))
7 istendod.1 . . 3 (𝜑 → (𝐾𝑉𝑊𝐻))
8 tendoset.l . . . 4 = (le‘𝐾)
9 tendoset.h . . . 4 𝐻 = (LHyp‘𝐾)
10 tendoset.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
11 tendoset.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
12 tendoset.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
138, 9, 10, 11, 12istendo 40869 . . 3 ((𝐾𝑉𝑊𝐻) → (𝑆𝐸 ↔ (𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓))))
147, 13syl 17 . 2 (𝜑 → (𝑆𝐸 ↔ (𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓))))
151, 4, 6, 14mpbir3and 1343 1 (𝜑𝑆𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3049   class class class wbr 5095  ccom 5625  wf 6485  cfv 6489  lecple 17178  LHypclh 40093  LTrncltrn 40210  trLctrl 40267  TEndoctendo 40861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-map 8761  df-tendo 40864
This theorem is referenced by:  tendoidcl  40878  tendococl  40881  tendoplcl  40890  tendo0cl  40899  tendoicl  40905  cdlemk56  41080
  Copyright terms: Public domain W3C validator