Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istendod Structured version   Visualization version   GIF version

Theorem istendod 40786
Description: Deduce the predicate "is a trace-preserving endomorphism". (Contributed by NM, 9-Jun-2013.)
Hypotheses
Ref Expression
tendoset.l = (le‘𝐾)
tendoset.h 𝐻 = (LHyp‘𝐾)
tendoset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoset.r 𝑅 = ((trL‘𝐾)‘𝑊)
tendoset.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
istendod.1 (𝜑 → (𝐾𝑉𝑊𝐻))
istendod.2 (𝜑𝑆:𝑇𝑇)
istendod.3 ((𝜑𝑓𝑇𝑔𝑇) → (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)))
istendod.4 ((𝜑𝑓𝑇) → (𝑅‘(𝑆𝑓)) (𝑅𝑓))
Assertion
Ref Expression
istendod (𝜑𝑆𝐸)
Distinct variable groups:   𝑓,𝑔,𝐾   𝑇,𝑓,𝑔   𝑓,𝑊,𝑔   𝑆,𝑓,𝑔   ,𝑓   𝑅,𝑓   𝜑,𝑓,𝑔
Allowed substitution hints:   𝑅(𝑔)   𝐸(𝑓,𝑔)   𝐻(𝑓,𝑔)   (𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem istendod
StepHypRef Expression
1 istendod.2 . 2 (𝜑𝑆:𝑇𝑇)
2 istendod.3 . . . 4 ((𝜑𝑓𝑇𝑔𝑇) → (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)))
323expb 1120 . . 3 ((𝜑 ∧ (𝑓𝑇𝑔𝑇)) → (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)))
43ralrimivva 3188 . 2 (𝜑 → ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)))
5 istendod.4 . . 3 ((𝜑𝑓𝑇) → (𝑅‘(𝑆𝑓)) (𝑅𝑓))
65ralrimiva 3133 . 2 (𝜑 → ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓))
7 istendod.1 . . 3 (𝜑 → (𝐾𝑉𝑊𝐻))
8 tendoset.l . . . 4 = (le‘𝐾)
9 tendoset.h . . . 4 𝐻 = (LHyp‘𝐾)
10 tendoset.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
11 tendoset.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
12 tendoset.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
138, 9, 10, 11, 12istendo 40784 . . 3 ((𝐾𝑉𝑊𝐻) → (𝑆𝐸 ↔ (𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓))))
147, 13syl 17 . 2 (𝜑 → (𝑆𝐸 ↔ (𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓))))
151, 4, 6, 14mpbir3and 1343 1 (𝜑𝑆𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052   class class class wbr 5124  ccom 5663  wf 6532  cfv 6536  lecple 17283  LHypclh 40008  LTrncltrn 40125  trLctrl 40182  TEndoctendo 40776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-map 8847  df-tendo 40779
This theorem is referenced by:  tendoidcl  40793  tendococl  40796  tendoplcl  40805  tendo0cl  40814  tendoicl  40820  cdlemk56  40995
  Copyright terms: Public domain W3C validator