Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istendod Structured version   Visualization version   GIF version

Theorem istendod 40780
Description: Deduce the predicate "is a trace-preserving endomorphism". (Contributed by NM, 9-Jun-2013.)
Hypotheses
Ref Expression
tendoset.l = (le‘𝐾)
tendoset.h 𝐻 = (LHyp‘𝐾)
tendoset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoset.r 𝑅 = ((trL‘𝐾)‘𝑊)
tendoset.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
istendod.1 (𝜑 → (𝐾𝑉𝑊𝐻))
istendod.2 (𝜑𝑆:𝑇𝑇)
istendod.3 ((𝜑𝑓𝑇𝑔𝑇) → (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)))
istendod.4 ((𝜑𝑓𝑇) → (𝑅‘(𝑆𝑓)) (𝑅𝑓))
Assertion
Ref Expression
istendod (𝜑𝑆𝐸)
Distinct variable groups:   𝑓,𝑔,𝐾   𝑇,𝑓,𝑔   𝑓,𝑊,𝑔   𝑆,𝑓,𝑔   ,𝑓   𝑅,𝑓   𝜑,𝑓,𝑔
Allowed substitution hints:   𝑅(𝑔)   𝐸(𝑓,𝑔)   𝐻(𝑓,𝑔)   (𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem istendod
StepHypRef Expression
1 istendod.2 . 2 (𝜑𝑆:𝑇𝑇)
2 istendod.3 . . . 4 ((𝜑𝑓𝑇𝑔𝑇) → (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)))
323expb 1120 . . 3 ((𝜑 ∧ (𝑓𝑇𝑔𝑇)) → (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)))
43ralrimivva 3173 . 2 (𝜑 → ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)))
5 istendod.4 . . 3 ((𝜑𝑓𝑇) → (𝑅‘(𝑆𝑓)) (𝑅𝑓))
65ralrimiva 3122 . 2 (𝜑 → ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓))
7 istendod.1 . . 3 (𝜑 → (𝐾𝑉𝑊𝐻))
8 tendoset.l . . . 4 = (le‘𝐾)
9 tendoset.h . . . 4 𝐻 = (LHyp‘𝐾)
10 tendoset.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
11 tendoset.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
12 tendoset.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
138, 9, 10, 11, 12istendo 40778 . . 3 ((𝐾𝑉𝑊𝐻) → (𝑆𝐸 ↔ (𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓))))
147, 13syl 17 . 2 (𝜑 → (𝑆𝐸 ↔ (𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓))))
151, 4, 6, 14mpbir3and 1343 1 (𝜑𝑆𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wral 3045   class class class wbr 5089  ccom 5618  wf 6473  cfv 6477  lecple 17160  LHypclh 40002  LTrncltrn 40119  trLctrl 40176  TEndoctendo 40770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-map 8747  df-tendo 40773
This theorem is referenced by:  tendoidcl  40787  tendococl  40790  tendoplcl  40799  tendo0cl  40808  tendoicl  40814  cdlemk56  40989
  Copyright terms: Public domain W3C validator