Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendococl Structured version   Visualization version   GIF version

Theorem tendococl 40099
Description: The composition of two trace-preserving endomorphisms (multiplication in the endormorphism ring) is a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.)
Hypotheses
Ref Expression
tendoco.h 𝐻 = (LHyp‘𝐾)
tendoco.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendococl (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → (𝑆𝑇) ∈ 𝐸)

Proof of Theorem tendococl
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2724 . 2 (le‘𝐾) = (le‘𝐾)
2 tendoco.h . 2 𝐻 = (LHyp‘𝐾)
3 eqid 2724 . 2 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
4 eqid 2724 . 2 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
5 tendoco.e . 2 𝐸 = ((TEndo‘𝐾)‘𝑊)
6 simp1 1133 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 simp2 1134 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → 𝑆𝐸)
82, 3, 5tendof 40090 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → 𝑆:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
96, 7, 8syl2anc 583 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → 𝑆:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
10 simp3 1135 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → 𝑇𝐸)
112, 3, 5tendof 40090 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇𝐸) → 𝑇:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
126, 10, 11syl2anc 583 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → 𝑇:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
13 fco 6731 . . 3 ((𝑆:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊) ∧ 𝑇:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊)) → (𝑆𝑇):((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
149, 12, 13syl2anc 583 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → (𝑆𝑇):((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
15 simp11l 1281 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝐾 ∈ HL)
16 simp11r 1282 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑊𝐻)
17 simp13 1202 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑇𝐸)
18 simp2 1134 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑓 ∈ ((LTrn‘𝐾)‘𝑊))
19 simp3 1135 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑔 ∈ ((LTrn‘𝐾)‘𝑊))
202, 3, 5tendovalco 40092 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐸) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊))) → (𝑇‘(𝑓𝑔)) = ((𝑇𝑓) ∘ (𝑇𝑔)))
2115, 16, 17, 18, 19, 20syl32anc 1375 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇‘(𝑓𝑔)) = ((𝑇𝑓) ∘ (𝑇𝑔)))
2221fveq2d 6885 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘(𝑇‘(𝑓𝑔))) = (𝑆‘((𝑇𝑓) ∘ (𝑇𝑔))))
23 simp12 1201 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑆𝐸)
24 simp11 1200 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
252, 3, 5tendocl 40094 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇𝐸𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇𝑓) ∈ ((LTrn‘𝐾)‘𝑊))
2624, 17, 18, 25syl3anc 1368 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇𝑓) ∈ ((LTrn‘𝐾)‘𝑊))
272, 3, 5tendocl 40094 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇𝐸𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇𝑔) ∈ ((LTrn‘𝐾)‘𝑊))
2824, 17, 19, 27syl3anc 1368 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇𝑔) ∈ ((LTrn‘𝐾)‘𝑊))
292, 3, 5tendovalco 40092 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑆𝐸) ∧ ((𝑇𝑓) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑇𝑔) ∈ ((LTrn‘𝐾)‘𝑊))) → (𝑆‘((𝑇𝑓) ∘ (𝑇𝑔))) = ((𝑆‘(𝑇𝑓)) ∘ (𝑆‘(𝑇𝑔))))
3015, 16, 23, 26, 28, 29syl32anc 1375 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘((𝑇𝑓) ∘ (𝑇𝑔))) = ((𝑆‘(𝑇𝑓)) ∘ (𝑆‘(𝑇𝑔))))
3122, 30eqtrd 2764 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘(𝑇‘(𝑓𝑔))) = ((𝑆‘(𝑇𝑓)) ∘ (𝑆‘(𝑇𝑔))))
322, 3ltrnco 40046 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑓𝑔) ∈ ((LTrn‘𝐾)‘𝑊))
3324, 18, 19, 32syl3anc 1368 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑓𝑔) ∈ ((LTrn‘𝐾)‘𝑊))
342, 3, 5tendocoval 40093 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑇𝐸) ∧ (𝑓𝑔) ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘(𝑓𝑔)) = (𝑆‘(𝑇‘(𝑓𝑔))))
3524, 23, 17, 33, 34syl121anc 1372 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘(𝑓𝑔)) = (𝑆‘(𝑇‘(𝑓𝑔))))
362, 3, 5tendocoval 40093 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘𝑓) = (𝑆‘(𝑇𝑓)))
3715, 16, 23, 17, 18, 36syl221anc 1378 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘𝑓) = (𝑆‘(𝑇𝑓)))
382, 3, 5tendocoval 40093 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑇𝐸) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘𝑔) = (𝑆‘(𝑇𝑔)))
3915, 16, 23, 17, 19, 38syl221anc 1378 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘𝑔) = (𝑆‘(𝑇𝑔)))
4037, 39coeq12d 5854 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (((𝑆𝑇)‘𝑓) ∘ ((𝑆𝑇)‘𝑔)) = ((𝑆‘(𝑇𝑓)) ∘ (𝑆‘(𝑇𝑔))))
4131, 35, 403eqtr4d 2774 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘(𝑓𝑔)) = (((𝑆𝑇)‘𝑓) ∘ ((𝑆𝑇)‘𝑔)))
42 eqid 2724 . . 3 (Base‘𝐾) = (Base‘𝐾)
43 simpl1l 1221 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝐾 ∈ HL)
4443hllatd 38690 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝐾 ∈ Lat)
45 simpl1 1188 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
46 simpl2 1189 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑆𝐸)
47 simpl3 1190 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑇𝐸)
48 simpr 484 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑓 ∈ ((LTrn‘𝐾)‘𝑊))
4945, 46, 47, 48, 36syl121anc 1372 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘𝑓) = (𝑆‘(𝑇𝑓)))
5045, 47, 48, 25syl3anc 1368 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇𝑓) ∈ ((LTrn‘𝐾)‘𝑊))
512, 3, 5tendocl 40094 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝑇𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘(𝑇𝑓)) ∈ ((LTrn‘𝐾)‘𝑊))
5245, 46, 50, 51syl3anc 1368 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘(𝑇𝑓)) ∈ ((LTrn‘𝐾)‘𝑊))
5349, 52eqeltrd 2825 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘𝑓) ∈ ((LTrn‘𝐾)‘𝑊))
5442, 2, 3, 4trlcl 39491 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝑇)‘𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑆𝑇)‘𝑓)) ∈ (Base‘𝐾))
5545, 53, 54syl2anc 583 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑆𝑇)‘𝑓)) ∈ (Base‘𝐾))
5642, 2, 3, 4trlcl 39491 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑇𝑓)) ∈ (Base‘𝐾))
5745, 50, 56syl2anc 583 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑇𝑓)) ∈ (Base‘𝐾))
5842, 2, 3, 4trlcl 39491 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾))
5945, 48, 58syl2anc 583 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾))
60 simpl1r 1222 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑊𝐻)
6143, 60, 46, 47, 48, 36syl221anc 1378 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘𝑓) = (𝑆‘(𝑇𝑓)))
6261fveq2d 6885 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑆𝑇)‘𝑓)) = (((trL‘𝐾)‘𝑊)‘(𝑆‘(𝑇𝑓))))
631, 2, 3, 4, 5tendotp 40088 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝑇𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑆‘(𝑇𝑓)))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑇𝑓)))
6445, 46, 50, 63syl3anc 1368 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑆‘(𝑇𝑓)))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑇𝑓)))
6562, 64eqbrtrd 5160 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑆𝑇)‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑇𝑓)))
661, 2, 3, 4, 5tendotp 40088 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇𝐸𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑇𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓))
6745, 47, 48, 66syl3anc 1368 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑇𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓))
6842, 1, 44, 55, 57, 59, 65, 67lattrd 18398 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑆𝑇)‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓))
691, 2, 3, 4, 5, 6, 14, 41, 68istendod 40089 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → (𝑆𝑇) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098   class class class wbr 5138  ccom 5670  wf 6529  cfv 6533  Basecbs 17140  lecple 17200  HLchlt 38676  LHypclh 39311  LTrncltrn 39428  trLctrl 39485  TEndoctendo 40079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-riotaBAD 38279
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-undef 8253  df-map 8817  df-proset 18247  df-poset 18265  df-plt 18282  df-lub 18298  df-glb 18299  df-join 18300  df-meet 18301  df-p0 18377  df-p1 18378  df-lat 18384  df-clat 18451  df-oposet 38502  df-ol 38504  df-oml 38505  df-covers 38592  df-ats 38593  df-atl 38624  df-cvlat 38648  df-hlat 38677  df-llines 38825  df-lplanes 38826  df-lvols 38827  df-lines 38828  df-psubsp 38830  df-pmap 38831  df-padd 39123  df-lhyp 39315  df-laut 39316  df-ldil 39431  df-ltrn 39432  df-trl 39486  df-tendo 40082
This theorem is referenced by:  tendodi1  40111  tendodi2  40112  tendo0mul  40153  tendo0mulr  40154  tendoconid  40156  cdleml3N  40305  cdleml8  40310  erngdvlem3  40317  erngdvlem3-rN  40325  dvalveclem  40352  dvhvscacl  40430  dvhlveclem  40435  diblss  40497  dicvscacl  40518  dih1dimatlem0  40655
  Copyright terms: Public domain W3C validator