Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendococl Structured version   Visualization version   GIF version

Theorem tendococl 38713
Description: The composition of two trace-preserving endomorphisms (multiplication in the endormorphism ring) is a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.)
Hypotheses
Ref Expression
tendoco.h 𝐻 = (LHyp‘𝐾)
tendoco.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendococl (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → (𝑆𝑇) ∈ 𝐸)

Proof of Theorem tendococl
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . 2 (le‘𝐾) = (le‘𝐾)
2 tendoco.h . 2 𝐻 = (LHyp‘𝐾)
3 eqid 2738 . 2 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
4 eqid 2738 . 2 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
5 tendoco.e . 2 𝐸 = ((TEndo‘𝐾)‘𝑊)
6 simp1 1134 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 simp2 1135 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → 𝑆𝐸)
82, 3, 5tendof 38704 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → 𝑆:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
96, 7, 8syl2anc 583 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → 𝑆:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
10 simp3 1136 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → 𝑇𝐸)
112, 3, 5tendof 38704 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇𝐸) → 𝑇:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
126, 10, 11syl2anc 583 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → 𝑇:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
13 fco 6608 . . 3 ((𝑆:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊) ∧ 𝑇:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊)) → (𝑆𝑇):((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
149, 12, 13syl2anc 583 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → (𝑆𝑇):((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
15 simp11l 1282 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝐾 ∈ HL)
16 simp11r 1283 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑊𝐻)
17 simp13 1203 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑇𝐸)
18 simp2 1135 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑓 ∈ ((LTrn‘𝐾)‘𝑊))
19 simp3 1136 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑔 ∈ ((LTrn‘𝐾)‘𝑊))
202, 3, 5tendovalco 38706 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐸) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊))) → (𝑇‘(𝑓𝑔)) = ((𝑇𝑓) ∘ (𝑇𝑔)))
2115, 16, 17, 18, 19, 20syl32anc 1376 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇‘(𝑓𝑔)) = ((𝑇𝑓) ∘ (𝑇𝑔)))
2221fveq2d 6760 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘(𝑇‘(𝑓𝑔))) = (𝑆‘((𝑇𝑓) ∘ (𝑇𝑔))))
23 simp12 1202 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑆𝐸)
24 simp11 1201 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
252, 3, 5tendocl 38708 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇𝐸𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇𝑓) ∈ ((LTrn‘𝐾)‘𝑊))
2624, 17, 18, 25syl3anc 1369 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇𝑓) ∈ ((LTrn‘𝐾)‘𝑊))
272, 3, 5tendocl 38708 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇𝐸𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇𝑔) ∈ ((LTrn‘𝐾)‘𝑊))
2824, 17, 19, 27syl3anc 1369 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇𝑔) ∈ ((LTrn‘𝐾)‘𝑊))
292, 3, 5tendovalco 38706 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑆𝐸) ∧ ((𝑇𝑓) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑇𝑔) ∈ ((LTrn‘𝐾)‘𝑊))) → (𝑆‘((𝑇𝑓) ∘ (𝑇𝑔))) = ((𝑆‘(𝑇𝑓)) ∘ (𝑆‘(𝑇𝑔))))
3015, 16, 23, 26, 28, 29syl32anc 1376 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘((𝑇𝑓) ∘ (𝑇𝑔))) = ((𝑆‘(𝑇𝑓)) ∘ (𝑆‘(𝑇𝑔))))
3122, 30eqtrd 2778 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘(𝑇‘(𝑓𝑔))) = ((𝑆‘(𝑇𝑓)) ∘ (𝑆‘(𝑇𝑔))))
322, 3ltrnco 38660 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑓𝑔) ∈ ((LTrn‘𝐾)‘𝑊))
3324, 18, 19, 32syl3anc 1369 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑓𝑔) ∈ ((LTrn‘𝐾)‘𝑊))
342, 3, 5tendocoval 38707 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑇𝐸) ∧ (𝑓𝑔) ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘(𝑓𝑔)) = (𝑆‘(𝑇‘(𝑓𝑔))))
3524, 23, 17, 33, 34syl121anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘(𝑓𝑔)) = (𝑆‘(𝑇‘(𝑓𝑔))))
362, 3, 5tendocoval 38707 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘𝑓) = (𝑆‘(𝑇𝑓)))
3715, 16, 23, 17, 18, 36syl221anc 1379 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘𝑓) = (𝑆‘(𝑇𝑓)))
382, 3, 5tendocoval 38707 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑇𝐸) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘𝑔) = (𝑆‘(𝑇𝑔)))
3915, 16, 23, 17, 19, 38syl221anc 1379 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘𝑔) = (𝑆‘(𝑇𝑔)))
4037, 39coeq12d 5762 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (((𝑆𝑇)‘𝑓) ∘ ((𝑆𝑇)‘𝑔)) = ((𝑆‘(𝑇𝑓)) ∘ (𝑆‘(𝑇𝑔))))
4131, 35, 403eqtr4d 2788 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘(𝑓𝑔)) = (((𝑆𝑇)‘𝑓) ∘ ((𝑆𝑇)‘𝑔)))
42 eqid 2738 . . 3 (Base‘𝐾) = (Base‘𝐾)
43 simpl1l 1222 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝐾 ∈ HL)
4443hllatd 37305 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝐾 ∈ Lat)
45 simpl1 1189 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
46 simpl2 1190 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑆𝐸)
47 simpl3 1191 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑇𝐸)
48 simpr 484 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑓 ∈ ((LTrn‘𝐾)‘𝑊))
4945, 46, 47, 48, 36syl121anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘𝑓) = (𝑆‘(𝑇𝑓)))
5045, 47, 48, 25syl3anc 1369 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇𝑓) ∈ ((LTrn‘𝐾)‘𝑊))
512, 3, 5tendocl 38708 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝑇𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘(𝑇𝑓)) ∈ ((LTrn‘𝐾)‘𝑊))
5245, 46, 50, 51syl3anc 1369 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘(𝑇𝑓)) ∈ ((LTrn‘𝐾)‘𝑊))
5349, 52eqeltrd 2839 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘𝑓) ∈ ((LTrn‘𝐾)‘𝑊))
5442, 2, 3, 4trlcl 38105 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝑇)‘𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑆𝑇)‘𝑓)) ∈ (Base‘𝐾))
5545, 53, 54syl2anc 583 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑆𝑇)‘𝑓)) ∈ (Base‘𝐾))
5642, 2, 3, 4trlcl 38105 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑇𝑓)) ∈ (Base‘𝐾))
5745, 50, 56syl2anc 583 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑇𝑓)) ∈ (Base‘𝐾))
5842, 2, 3, 4trlcl 38105 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾))
5945, 48, 58syl2anc 583 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾))
60 simpl1r 1223 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑊𝐻)
6143, 60, 46, 47, 48, 36syl221anc 1379 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘𝑓) = (𝑆‘(𝑇𝑓)))
6261fveq2d 6760 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑆𝑇)‘𝑓)) = (((trL‘𝐾)‘𝑊)‘(𝑆‘(𝑇𝑓))))
631, 2, 3, 4, 5tendotp 38702 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝑇𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑆‘(𝑇𝑓)))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑇𝑓)))
6445, 46, 50, 63syl3anc 1369 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑆‘(𝑇𝑓)))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑇𝑓)))
6562, 64eqbrtrd 5092 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑆𝑇)‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑇𝑓)))
661, 2, 3, 4, 5tendotp 38702 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇𝐸𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑇𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓))
6745, 47, 48, 66syl3anc 1369 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑇𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓))
6842, 1, 44, 55, 57, 59, 65, 67lattrd 18079 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑆𝑇)‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓))
691, 2, 3, 4, 5, 6, 14, 41, 68istendod 38703 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → (𝑆𝑇) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  ccom 5584  wf 6414  cfv 6418  Basecbs 16840  lecple 16895  HLchlt 37291  LHypclh 37925  LTrncltrn 38042  trLctrl 38099  TEndoctendo 38693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-riotaBAD 36894
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-undef 8060  df-map 8575  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-llines 37439  df-lplanes 37440  df-lvols 37441  df-lines 37442  df-psubsp 37444  df-pmap 37445  df-padd 37737  df-lhyp 37929  df-laut 37930  df-ldil 38045  df-ltrn 38046  df-trl 38100  df-tendo 38696
This theorem is referenced by:  tendodi1  38725  tendodi2  38726  tendo0mul  38767  tendo0mulr  38768  tendoconid  38770  cdleml3N  38919  cdleml8  38924  erngdvlem3  38931  erngdvlem3-rN  38939  dvalveclem  38966  dvhvscacl  39044  dvhlveclem  39049  diblss  39111  dicvscacl  39132  dih1dimatlem0  39269
  Copyright terms: Public domain W3C validator