Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendococl Structured version   Visualization version   GIF version

Theorem tendococl 40810
Description: The composition of two trace-preserving endomorphisms (multiplication in the endormorphism ring) is a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.)
Hypotheses
Ref Expression
tendoco.h 𝐻 = (LHyp‘𝐾)
tendoco.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendococl (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → (𝑆𝑇) ∈ 𝐸)

Proof of Theorem tendococl
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . 2 (le‘𝐾) = (le‘𝐾)
2 tendoco.h . 2 𝐻 = (LHyp‘𝐾)
3 eqid 2731 . 2 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
4 eqid 2731 . 2 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
5 tendoco.e . 2 𝐸 = ((TEndo‘𝐾)‘𝑊)
6 simp1 1136 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 simp2 1137 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → 𝑆𝐸)
82, 3, 5tendof 40801 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → 𝑆:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
96, 7, 8syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → 𝑆:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
10 simp3 1138 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → 𝑇𝐸)
112, 3, 5tendof 40801 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇𝐸) → 𝑇:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
126, 10, 11syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → 𝑇:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
13 fco 6675 . . 3 ((𝑆:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊) ∧ 𝑇:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊)) → (𝑆𝑇):((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
149, 12, 13syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → (𝑆𝑇):((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
15 simp11l 1285 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝐾 ∈ HL)
16 simp11r 1286 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑊𝐻)
17 simp13 1206 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑇𝐸)
18 simp2 1137 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑓 ∈ ((LTrn‘𝐾)‘𝑊))
19 simp3 1138 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑔 ∈ ((LTrn‘𝐾)‘𝑊))
202, 3, 5tendovalco 40803 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐸) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊))) → (𝑇‘(𝑓𝑔)) = ((𝑇𝑓) ∘ (𝑇𝑔)))
2115, 16, 17, 18, 19, 20syl32anc 1380 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇‘(𝑓𝑔)) = ((𝑇𝑓) ∘ (𝑇𝑔)))
2221fveq2d 6826 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘(𝑇‘(𝑓𝑔))) = (𝑆‘((𝑇𝑓) ∘ (𝑇𝑔))))
23 simp12 1205 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑆𝐸)
24 simp11 1204 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
252, 3, 5tendocl 40805 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇𝐸𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇𝑓) ∈ ((LTrn‘𝐾)‘𝑊))
2624, 17, 18, 25syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇𝑓) ∈ ((LTrn‘𝐾)‘𝑊))
272, 3, 5tendocl 40805 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇𝐸𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇𝑔) ∈ ((LTrn‘𝐾)‘𝑊))
2824, 17, 19, 27syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇𝑔) ∈ ((LTrn‘𝐾)‘𝑊))
292, 3, 5tendovalco 40803 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑆𝐸) ∧ ((𝑇𝑓) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑇𝑔) ∈ ((LTrn‘𝐾)‘𝑊))) → (𝑆‘((𝑇𝑓) ∘ (𝑇𝑔))) = ((𝑆‘(𝑇𝑓)) ∘ (𝑆‘(𝑇𝑔))))
3015, 16, 23, 26, 28, 29syl32anc 1380 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘((𝑇𝑓) ∘ (𝑇𝑔))) = ((𝑆‘(𝑇𝑓)) ∘ (𝑆‘(𝑇𝑔))))
3122, 30eqtrd 2766 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘(𝑇‘(𝑓𝑔))) = ((𝑆‘(𝑇𝑓)) ∘ (𝑆‘(𝑇𝑔))))
322, 3ltrnco 40757 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑓𝑔) ∈ ((LTrn‘𝐾)‘𝑊))
3324, 18, 19, 32syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑓𝑔) ∈ ((LTrn‘𝐾)‘𝑊))
342, 3, 5tendocoval 40804 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑇𝐸) ∧ (𝑓𝑔) ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘(𝑓𝑔)) = (𝑆‘(𝑇‘(𝑓𝑔))))
3524, 23, 17, 33, 34syl121anc 1377 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘(𝑓𝑔)) = (𝑆‘(𝑇‘(𝑓𝑔))))
362, 3, 5tendocoval 40804 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘𝑓) = (𝑆‘(𝑇𝑓)))
3715, 16, 23, 17, 18, 36syl221anc 1383 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘𝑓) = (𝑆‘(𝑇𝑓)))
382, 3, 5tendocoval 40804 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑇𝐸) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘𝑔) = (𝑆‘(𝑇𝑔)))
3915, 16, 23, 17, 19, 38syl221anc 1383 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘𝑔) = (𝑆‘(𝑇𝑔)))
4037, 39coeq12d 5804 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (((𝑆𝑇)‘𝑓) ∘ ((𝑆𝑇)‘𝑔)) = ((𝑆‘(𝑇𝑓)) ∘ (𝑆‘(𝑇𝑔))))
4131, 35, 403eqtr4d 2776 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘(𝑓𝑔)) = (((𝑆𝑇)‘𝑓) ∘ ((𝑆𝑇)‘𝑔)))
42 eqid 2731 . . 3 (Base‘𝐾) = (Base‘𝐾)
43 simpl1l 1225 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝐾 ∈ HL)
4443hllatd 39402 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝐾 ∈ Lat)
45 simpl1 1192 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
46 simpl2 1193 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑆𝐸)
47 simpl3 1194 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑇𝐸)
48 simpr 484 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑓 ∈ ((LTrn‘𝐾)‘𝑊))
4945, 46, 47, 48, 36syl121anc 1377 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘𝑓) = (𝑆‘(𝑇𝑓)))
5045, 47, 48, 25syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇𝑓) ∈ ((LTrn‘𝐾)‘𝑊))
512, 3, 5tendocl 40805 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝑇𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘(𝑇𝑓)) ∈ ((LTrn‘𝐾)‘𝑊))
5245, 46, 50, 51syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘(𝑇𝑓)) ∈ ((LTrn‘𝐾)‘𝑊))
5349, 52eqeltrd 2831 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘𝑓) ∈ ((LTrn‘𝐾)‘𝑊))
5442, 2, 3, 4trlcl 40202 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝑇)‘𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑆𝑇)‘𝑓)) ∈ (Base‘𝐾))
5545, 53, 54syl2anc 584 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑆𝑇)‘𝑓)) ∈ (Base‘𝐾))
5642, 2, 3, 4trlcl 40202 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑇𝑓)) ∈ (Base‘𝐾))
5745, 50, 56syl2anc 584 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑇𝑓)) ∈ (Base‘𝐾))
5842, 2, 3, 4trlcl 40202 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾))
5945, 48, 58syl2anc 584 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾))
60 simpl1r 1226 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑊𝐻)
6143, 60, 46, 47, 48, 36syl221anc 1383 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘𝑓) = (𝑆‘(𝑇𝑓)))
6261fveq2d 6826 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑆𝑇)‘𝑓)) = (((trL‘𝐾)‘𝑊)‘(𝑆‘(𝑇𝑓))))
631, 2, 3, 4, 5tendotp 40799 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝑇𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑆‘(𝑇𝑓)))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑇𝑓)))
6445, 46, 50, 63syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑆‘(𝑇𝑓)))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑇𝑓)))
6562, 64eqbrtrd 5113 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑆𝑇)‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑇𝑓)))
661, 2, 3, 4, 5tendotp 40799 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇𝐸𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑇𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓))
6745, 47, 48, 66syl3anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑇𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓))
6842, 1, 44, 55, 57, 59, 65, 67lattrd 18349 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑆𝑇)‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓))
691, 2, 3, 4, 5, 6, 14, 41, 68istendod 40800 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → (𝑆𝑇) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5091  ccom 5620  wf 6477  cfv 6481  Basecbs 17117  lecple 17165  HLchlt 39388  LHypclh 40022  LTrncltrn 40139  trLctrl 40196  TEndoctendo 40790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-riotaBAD 38991
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-undef 8203  df-map 8752  df-proset 18197  df-poset 18216  df-plt 18231  df-lub 18247  df-glb 18248  df-join 18249  df-meet 18250  df-p0 18326  df-p1 18327  df-lat 18335  df-clat 18402  df-oposet 39214  df-ol 39216  df-oml 39217  df-covers 39304  df-ats 39305  df-atl 39336  df-cvlat 39360  df-hlat 39389  df-llines 39536  df-lplanes 39537  df-lvols 39538  df-lines 39539  df-psubsp 39541  df-pmap 39542  df-padd 39834  df-lhyp 40026  df-laut 40027  df-ldil 40142  df-ltrn 40143  df-trl 40197  df-tendo 40793
This theorem is referenced by:  tendodi1  40822  tendodi2  40823  tendo0mul  40864  tendo0mulr  40865  tendoconid  40867  cdleml3N  41016  cdleml8  41021  erngdvlem3  41028  erngdvlem3-rN  41036  dvalveclem  41063  dvhvscacl  41141  dvhlveclem  41146  diblss  41208  dicvscacl  41229  dih1dimatlem0  41366
  Copyright terms: Public domain W3C validator