| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2737 |
. 2
⊢
(le‘𝐾) =
(le‘𝐾) |
| 2 | | tendoco.h |
. 2
⊢ 𝐻 = (LHyp‘𝐾) |
| 3 | | eqid 2737 |
. 2
⊢
((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) |
| 4 | | eqid 2737 |
. 2
⊢
((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) |
| 5 | | tendoco.e |
. 2
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| 6 | | simp1 1137 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 7 | | simp2 1138 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) → 𝑆 ∈ 𝐸) |
| 8 | 2, 3, 5 | tendof 40765 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → 𝑆:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊)) |
| 9 | 6, 7, 8 | syl2anc 584 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) → 𝑆:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊)) |
| 10 | | simp3 1139 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) → 𝑇 ∈ 𝐸) |
| 11 | 2, 3, 5 | tendof 40765 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑇 ∈ 𝐸) → 𝑇:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊)) |
| 12 | 6, 10, 11 | syl2anc 584 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) → 𝑇:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊)) |
| 13 | | fco 6760 |
. . 3
⊢ ((𝑆:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊) ∧ 𝑇:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊)) → (𝑆 ∘ 𝑇):((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊)) |
| 14 | 9, 12, 13 | syl2anc 584 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) → (𝑆 ∘ 𝑇):((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊)) |
| 15 | | simp11l 1285 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝐾 ∈ HL) |
| 16 | | simp11r 1286 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑊 ∈ 𝐻) |
| 17 | | simp13 1206 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑇 ∈ 𝐸) |
| 18 | | simp2 1138 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) |
| 19 | | simp3 1139 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) |
| 20 | 2, 3, 5 | tendovalco 40767 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐸) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊))) → (𝑇‘(𝑓 ∘ 𝑔)) = ((𝑇‘𝑓) ∘ (𝑇‘𝑔))) |
| 21 | 15, 16, 17, 18, 19, 20 | syl32anc 1380 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇‘(𝑓 ∘ 𝑔)) = ((𝑇‘𝑓) ∘ (𝑇‘𝑔))) |
| 22 | 21 | fveq2d 6910 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘(𝑇‘(𝑓 ∘ 𝑔))) = (𝑆‘((𝑇‘𝑓) ∘ (𝑇‘𝑔)))) |
| 23 | | simp12 1205 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑆 ∈ 𝐸) |
| 24 | | simp11 1204 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 25 | 2, 3, 5 | tendocl 40769 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑇 ∈ 𝐸 ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇‘𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) |
| 26 | 24, 17, 18, 25 | syl3anc 1373 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇‘𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) |
| 27 | 2, 3, 5 | tendocl 40769 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑇 ∈ 𝐸 ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇‘𝑔) ∈ ((LTrn‘𝐾)‘𝑊)) |
| 28 | 24, 17, 19, 27 | syl3anc 1373 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇‘𝑔) ∈ ((LTrn‘𝐾)‘𝑊)) |
| 29 | 2, 3, 5 | tendovalco 40767 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑆 ∈ 𝐸) ∧ ((𝑇‘𝑓) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑇‘𝑔) ∈ ((LTrn‘𝐾)‘𝑊))) → (𝑆‘((𝑇‘𝑓) ∘ (𝑇‘𝑔))) = ((𝑆‘(𝑇‘𝑓)) ∘ (𝑆‘(𝑇‘𝑔)))) |
| 30 | 15, 16, 23, 26, 28, 29 | syl32anc 1380 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘((𝑇‘𝑓) ∘ (𝑇‘𝑔))) = ((𝑆‘(𝑇‘𝑓)) ∘ (𝑆‘(𝑇‘𝑔)))) |
| 31 | 22, 30 | eqtrd 2777 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘(𝑇‘(𝑓 ∘ 𝑔))) = ((𝑆‘(𝑇‘𝑓)) ∘ (𝑆‘(𝑇‘𝑔)))) |
| 32 | 2, 3 | ltrnco 40721 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑓 ∘ 𝑔) ∈ ((LTrn‘𝐾)‘𝑊)) |
| 33 | 24, 18, 19, 32 | syl3anc 1373 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑓 ∘ 𝑔) ∈ ((LTrn‘𝐾)‘𝑊)) |
| 34 | 2, 3, 5 | tendocoval 40768 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ (𝑓 ∘ 𝑔) ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆 ∘ 𝑇)‘(𝑓 ∘ 𝑔)) = (𝑆‘(𝑇‘(𝑓 ∘ 𝑔)))) |
| 35 | 24, 23, 17, 33, 34 | syl121anc 1377 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆 ∘ 𝑇)‘(𝑓 ∘ 𝑔)) = (𝑆‘(𝑇‘(𝑓 ∘ 𝑔)))) |
| 36 | 2, 3, 5 | tendocoval 40768 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆 ∘ 𝑇)‘𝑓) = (𝑆‘(𝑇‘𝑓))) |
| 37 | 15, 16, 23, 17, 18, 36 | syl221anc 1383 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆 ∘ 𝑇)‘𝑓) = (𝑆‘(𝑇‘𝑓))) |
| 38 | 2, 3, 5 | tendocoval 40768 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆 ∘ 𝑇)‘𝑔) = (𝑆‘(𝑇‘𝑔))) |
| 39 | 15, 16, 23, 17, 19, 38 | syl221anc 1383 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆 ∘ 𝑇)‘𝑔) = (𝑆‘(𝑇‘𝑔))) |
| 40 | 37, 39 | coeq12d 5875 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (((𝑆 ∘ 𝑇)‘𝑓) ∘ ((𝑆 ∘ 𝑇)‘𝑔)) = ((𝑆‘(𝑇‘𝑓)) ∘ (𝑆‘(𝑇‘𝑔)))) |
| 41 | 31, 35, 40 | 3eqtr4d 2787 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆 ∘ 𝑇)‘(𝑓 ∘ 𝑔)) = (((𝑆 ∘ 𝑇)‘𝑓) ∘ ((𝑆 ∘ 𝑇)‘𝑔))) |
| 42 | | eqid 2737 |
. . 3
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 43 | | simpl1l 1225 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝐾 ∈ HL) |
| 44 | 43 | hllatd 39365 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝐾 ∈ Lat) |
| 45 | | simpl1 1192 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 46 | | simpl2 1193 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑆 ∈ 𝐸) |
| 47 | | simpl3 1194 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑇 ∈ 𝐸) |
| 48 | | simpr 484 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) |
| 49 | 45, 46, 47, 48, 36 | syl121anc 1377 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆 ∘ 𝑇)‘𝑓) = (𝑆‘(𝑇‘𝑓))) |
| 50 | 45, 47, 48, 25 | syl3anc 1373 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇‘𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) |
| 51 | 2, 3, 5 | tendocl 40769 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ (𝑇‘𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘(𝑇‘𝑓)) ∈ ((LTrn‘𝐾)‘𝑊)) |
| 52 | 45, 46, 50, 51 | syl3anc 1373 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘(𝑇‘𝑓)) ∈ ((LTrn‘𝐾)‘𝑊)) |
| 53 | 49, 52 | eqeltrd 2841 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆 ∘ 𝑇)‘𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) |
| 54 | 42, 2, 3, 4 | trlcl 40166 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑆 ∘ 𝑇)‘𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑆 ∘ 𝑇)‘𝑓)) ∈ (Base‘𝐾)) |
| 55 | 45, 53, 54 | syl2anc 584 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑆 ∘ 𝑇)‘𝑓)) ∈ (Base‘𝐾)) |
| 56 | 42, 2, 3, 4 | trlcl 40166 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇‘𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑇‘𝑓)) ∈ (Base‘𝐾)) |
| 57 | 45, 50, 56 | syl2anc 584 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑇‘𝑓)) ∈ (Base‘𝐾)) |
| 58 | 42, 2, 3, 4 | trlcl 40166 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾)) |
| 59 | 45, 48, 58 | syl2anc 584 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾)) |
| 60 | | simpl1r 1226 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑊 ∈ 𝐻) |
| 61 | 43, 60, 46, 47, 48, 36 | syl221anc 1383 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆 ∘ 𝑇)‘𝑓) = (𝑆‘(𝑇‘𝑓))) |
| 62 | 61 | fveq2d 6910 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑆 ∘ 𝑇)‘𝑓)) = (((trL‘𝐾)‘𝑊)‘(𝑆‘(𝑇‘𝑓)))) |
| 63 | 1, 2, 3, 4, 5 | tendotp 40763 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ (𝑇‘𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑆‘(𝑇‘𝑓)))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑇‘𝑓))) |
| 64 | 45, 46, 50, 63 | syl3anc 1373 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑆‘(𝑇‘𝑓)))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑇‘𝑓))) |
| 65 | 62, 64 | eqbrtrd 5165 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑆 ∘ 𝑇)‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑇‘𝑓))) |
| 66 | 1, 2, 3, 4, 5 | tendotp 40763 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑇 ∈ 𝐸 ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑇‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓)) |
| 67 | 45, 47, 48, 66 | syl3anc 1373 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑇‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓)) |
| 68 | 42, 1, 44, 55, 57, 59, 65, 67 | lattrd 18491 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑆 ∘ 𝑇)‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓)) |
| 69 | 1, 2, 3, 4, 5, 6, 14, 41, 68 | istendod 40764 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) → (𝑆 ∘ 𝑇) ∈ 𝐸) |