Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendococl Structured version   Visualization version   GIF version

Theorem tendococl 40766
Description: The composition of two trace-preserving endomorphisms (multiplication in the endormorphism ring) is a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.)
Hypotheses
Ref Expression
tendoco.h 𝐻 = (LHyp‘𝐾)
tendoco.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendococl (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → (𝑆𝑇) ∈ 𝐸)

Proof of Theorem tendococl
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . 2 (le‘𝐾) = (le‘𝐾)
2 tendoco.h . 2 𝐻 = (LHyp‘𝐾)
3 eqid 2729 . 2 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
4 eqid 2729 . 2 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
5 tendoco.e . 2 𝐸 = ((TEndo‘𝐾)‘𝑊)
6 simp1 1136 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 simp2 1137 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → 𝑆𝐸)
82, 3, 5tendof 40757 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → 𝑆:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
96, 7, 8syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → 𝑆:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
10 simp3 1138 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → 𝑇𝐸)
112, 3, 5tendof 40757 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇𝐸) → 𝑇:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
126, 10, 11syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → 𝑇:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
13 fco 6712 . . 3 ((𝑆:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊) ∧ 𝑇:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊)) → (𝑆𝑇):((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
149, 12, 13syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → (𝑆𝑇):((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
15 simp11l 1285 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝐾 ∈ HL)
16 simp11r 1286 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑊𝐻)
17 simp13 1206 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑇𝐸)
18 simp2 1137 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑓 ∈ ((LTrn‘𝐾)‘𝑊))
19 simp3 1138 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑔 ∈ ((LTrn‘𝐾)‘𝑊))
202, 3, 5tendovalco 40759 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐸) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊))) → (𝑇‘(𝑓𝑔)) = ((𝑇𝑓) ∘ (𝑇𝑔)))
2115, 16, 17, 18, 19, 20syl32anc 1380 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇‘(𝑓𝑔)) = ((𝑇𝑓) ∘ (𝑇𝑔)))
2221fveq2d 6862 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘(𝑇‘(𝑓𝑔))) = (𝑆‘((𝑇𝑓) ∘ (𝑇𝑔))))
23 simp12 1205 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑆𝐸)
24 simp11 1204 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
252, 3, 5tendocl 40761 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇𝐸𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇𝑓) ∈ ((LTrn‘𝐾)‘𝑊))
2624, 17, 18, 25syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇𝑓) ∈ ((LTrn‘𝐾)‘𝑊))
272, 3, 5tendocl 40761 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇𝐸𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇𝑔) ∈ ((LTrn‘𝐾)‘𝑊))
2824, 17, 19, 27syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇𝑔) ∈ ((LTrn‘𝐾)‘𝑊))
292, 3, 5tendovalco 40759 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑆𝐸) ∧ ((𝑇𝑓) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑇𝑔) ∈ ((LTrn‘𝐾)‘𝑊))) → (𝑆‘((𝑇𝑓) ∘ (𝑇𝑔))) = ((𝑆‘(𝑇𝑓)) ∘ (𝑆‘(𝑇𝑔))))
3015, 16, 23, 26, 28, 29syl32anc 1380 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘((𝑇𝑓) ∘ (𝑇𝑔))) = ((𝑆‘(𝑇𝑓)) ∘ (𝑆‘(𝑇𝑔))))
3122, 30eqtrd 2764 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘(𝑇‘(𝑓𝑔))) = ((𝑆‘(𝑇𝑓)) ∘ (𝑆‘(𝑇𝑔))))
322, 3ltrnco 40713 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑓𝑔) ∈ ((LTrn‘𝐾)‘𝑊))
3324, 18, 19, 32syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑓𝑔) ∈ ((LTrn‘𝐾)‘𝑊))
342, 3, 5tendocoval 40760 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑇𝐸) ∧ (𝑓𝑔) ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘(𝑓𝑔)) = (𝑆‘(𝑇‘(𝑓𝑔))))
3524, 23, 17, 33, 34syl121anc 1377 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘(𝑓𝑔)) = (𝑆‘(𝑇‘(𝑓𝑔))))
362, 3, 5tendocoval 40760 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘𝑓) = (𝑆‘(𝑇𝑓)))
3715, 16, 23, 17, 18, 36syl221anc 1383 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘𝑓) = (𝑆‘(𝑇𝑓)))
382, 3, 5tendocoval 40760 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑇𝐸) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘𝑔) = (𝑆‘(𝑇𝑔)))
3915, 16, 23, 17, 19, 38syl221anc 1383 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘𝑔) = (𝑆‘(𝑇𝑔)))
4037, 39coeq12d 5828 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (((𝑆𝑇)‘𝑓) ∘ ((𝑆𝑇)‘𝑔)) = ((𝑆‘(𝑇𝑓)) ∘ (𝑆‘(𝑇𝑔))))
4131, 35, 403eqtr4d 2774 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘(𝑓𝑔)) = (((𝑆𝑇)‘𝑓) ∘ ((𝑆𝑇)‘𝑔)))
42 eqid 2729 . . 3 (Base‘𝐾) = (Base‘𝐾)
43 simpl1l 1225 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝐾 ∈ HL)
4443hllatd 39357 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝐾 ∈ Lat)
45 simpl1 1192 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
46 simpl2 1193 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑆𝐸)
47 simpl3 1194 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑇𝐸)
48 simpr 484 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑓 ∈ ((LTrn‘𝐾)‘𝑊))
4945, 46, 47, 48, 36syl121anc 1377 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘𝑓) = (𝑆‘(𝑇𝑓)))
5045, 47, 48, 25syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇𝑓) ∈ ((LTrn‘𝐾)‘𝑊))
512, 3, 5tendocl 40761 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝑇𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘(𝑇𝑓)) ∈ ((LTrn‘𝐾)‘𝑊))
5245, 46, 50, 51syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘(𝑇𝑓)) ∈ ((LTrn‘𝐾)‘𝑊))
5349, 52eqeltrd 2828 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘𝑓) ∈ ((LTrn‘𝐾)‘𝑊))
5442, 2, 3, 4trlcl 40158 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝑇)‘𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑆𝑇)‘𝑓)) ∈ (Base‘𝐾))
5545, 53, 54syl2anc 584 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑆𝑇)‘𝑓)) ∈ (Base‘𝐾))
5642, 2, 3, 4trlcl 40158 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑇𝑓)) ∈ (Base‘𝐾))
5745, 50, 56syl2anc 584 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑇𝑓)) ∈ (Base‘𝐾))
5842, 2, 3, 4trlcl 40158 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾))
5945, 48, 58syl2anc 584 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾))
60 simpl1r 1226 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑊𝐻)
6143, 60, 46, 47, 48, 36syl221anc 1383 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘𝑓) = (𝑆‘(𝑇𝑓)))
6261fveq2d 6862 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑆𝑇)‘𝑓)) = (((trL‘𝐾)‘𝑊)‘(𝑆‘(𝑇𝑓))))
631, 2, 3, 4, 5tendotp 40755 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝑇𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑆‘(𝑇𝑓)))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑇𝑓)))
6445, 46, 50, 63syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑆‘(𝑇𝑓)))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑇𝑓)))
6562, 64eqbrtrd 5129 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑆𝑇)‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑇𝑓)))
661, 2, 3, 4, 5tendotp 40755 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇𝐸𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑇𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓))
6745, 47, 48, 66syl3anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑇𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓))
6842, 1, 44, 55, 57, 59, 65, 67lattrd 18405 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑆𝑇)‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓))
691, 2, 3, 4, 5, 6, 14, 41, 68istendod 40756 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → (𝑆𝑇) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  ccom 5642  wf 6507  cfv 6511  Basecbs 17179  lecple 17227  HLchlt 39343  LHypclh 39978  LTrncltrn 40095  trLctrl 40152  TEndoctendo 40746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-riotaBAD 38946
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-undef 8252  df-map 8801  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493  df-lvols 39494  df-lines 39495  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-lhyp 39982  df-laut 39983  df-ldil 40098  df-ltrn 40099  df-trl 40153  df-tendo 40749
This theorem is referenced by:  tendodi1  40778  tendodi2  40779  tendo0mul  40820  tendo0mulr  40821  tendoconid  40823  cdleml3N  40972  cdleml8  40977  erngdvlem3  40984  erngdvlem3-rN  40992  dvalveclem  41019  dvhvscacl  41097  dvhlveclem  41102  diblss  41164  dicvscacl  41185  dih1dimatlem0  41322
  Copyright terms: Public domain W3C validator