Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. 2
⊢
(le‘𝐾) =
(le‘𝐾) |
2 | | tendoco.h |
. 2
⊢ 𝐻 = (LHyp‘𝐾) |
3 | | eqid 2738 |
. 2
⊢
((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) |
4 | | eqid 2738 |
. 2
⊢
((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) |
5 | | tendoco.e |
. 2
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
6 | | simp1 1134 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
7 | | simp2 1135 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) → 𝑆 ∈ 𝐸) |
8 | 2, 3, 5 | tendof 38704 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → 𝑆:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊)) |
9 | 6, 7, 8 | syl2anc 583 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) → 𝑆:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊)) |
10 | | simp3 1136 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) → 𝑇 ∈ 𝐸) |
11 | 2, 3, 5 | tendof 38704 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑇 ∈ 𝐸) → 𝑇:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊)) |
12 | 6, 10, 11 | syl2anc 583 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) → 𝑇:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊)) |
13 | | fco 6608 |
. . 3
⊢ ((𝑆:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊) ∧ 𝑇:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊)) → (𝑆 ∘ 𝑇):((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊)) |
14 | 9, 12, 13 | syl2anc 583 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) → (𝑆 ∘ 𝑇):((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊)) |
15 | | simp11l 1282 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝐾 ∈ HL) |
16 | | simp11r 1283 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑊 ∈ 𝐻) |
17 | | simp13 1203 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑇 ∈ 𝐸) |
18 | | simp2 1135 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) |
19 | | simp3 1136 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) |
20 | 2, 3, 5 | tendovalco 38706 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐸) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊))) → (𝑇‘(𝑓 ∘ 𝑔)) = ((𝑇‘𝑓) ∘ (𝑇‘𝑔))) |
21 | 15, 16, 17, 18, 19, 20 | syl32anc 1376 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇‘(𝑓 ∘ 𝑔)) = ((𝑇‘𝑓) ∘ (𝑇‘𝑔))) |
22 | 21 | fveq2d 6760 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘(𝑇‘(𝑓 ∘ 𝑔))) = (𝑆‘((𝑇‘𝑓) ∘ (𝑇‘𝑔)))) |
23 | | simp12 1202 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑆 ∈ 𝐸) |
24 | | simp11 1201 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
25 | 2, 3, 5 | tendocl 38708 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑇 ∈ 𝐸 ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇‘𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) |
26 | 24, 17, 18, 25 | syl3anc 1369 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇‘𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) |
27 | 2, 3, 5 | tendocl 38708 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑇 ∈ 𝐸 ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇‘𝑔) ∈ ((LTrn‘𝐾)‘𝑊)) |
28 | 24, 17, 19, 27 | syl3anc 1369 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇‘𝑔) ∈ ((LTrn‘𝐾)‘𝑊)) |
29 | 2, 3, 5 | tendovalco 38706 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑆 ∈ 𝐸) ∧ ((𝑇‘𝑓) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑇‘𝑔) ∈ ((LTrn‘𝐾)‘𝑊))) → (𝑆‘((𝑇‘𝑓) ∘ (𝑇‘𝑔))) = ((𝑆‘(𝑇‘𝑓)) ∘ (𝑆‘(𝑇‘𝑔)))) |
30 | 15, 16, 23, 26, 28, 29 | syl32anc 1376 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘((𝑇‘𝑓) ∘ (𝑇‘𝑔))) = ((𝑆‘(𝑇‘𝑓)) ∘ (𝑆‘(𝑇‘𝑔)))) |
31 | 22, 30 | eqtrd 2778 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘(𝑇‘(𝑓 ∘ 𝑔))) = ((𝑆‘(𝑇‘𝑓)) ∘ (𝑆‘(𝑇‘𝑔)))) |
32 | 2, 3 | ltrnco 38660 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑓 ∘ 𝑔) ∈ ((LTrn‘𝐾)‘𝑊)) |
33 | 24, 18, 19, 32 | syl3anc 1369 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑓 ∘ 𝑔) ∈ ((LTrn‘𝐾)‘𝑊)) |
34 | 2, 3, 5 | tendocoval 38707 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ (𝑓 ∘ 𝑔) ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆 ∘ 𝑇)‘(𝑓 ∘ 𝑔)) = (𝑆‘(𝑇‘(𝑓 ∘ 𝑔)))) |
35 | 24, 23, 17, 33, 34 | syl121anc 1373 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆 ∘ 𝑇)‘(𝑓 ∘ 𝑔)) = (𝑆‘(𝑇‘(𝑓 ∘ 𝑔)))) |
36 | 2, 3, 5 | tendocoval 38707 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆 ∘ 𝑇)‘𝑓) = (𝑆‘(𝑇‘𝑓))) |
37 | 15, 16, 23, 17, 18, 36 | syl221anc 1379 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆 ∘ 𝑇)‘𝑓) = (𝑆‘(𝑇‘𝑓))) |
38 | 2, 3, 5 | tendocoval 38707 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆 ∘ 𝑇)‘𝑔) = (𝑆‘(𝑇‘𝑔))) |
39 | 15, 16, 23, 17, 19, 38 | syl221anc 1379 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆 ∘ 𝑇)‘𝑔) = (𝑆‘(𝑇‘𝑔))) |
40 | 37, 39 | coeq12d 5762 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (((𝑆 ∘ 𝑇)‘𝑓) ∘ ((𝑆 ∘ 𝑇)‘𝑔)) = ((𝑆‘(𝑇‘𝑓)) ∘ (𝑆‘(𝑇‘𝑔)))) |
41 | 31, 35, 40 | 3eqtr4d 2788 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆 ∘ 𝑇)‘(𝑓 ∘ 𝑔)) = (((𝑆 ∘ 𝑇)‘𝑓) ∘ ((𝑆 ∘ 𝑇)‘𝑔))) |
42 | | eqid 2738 |
. . 3
⊢
(Base‘𝐾) =
(Base‘𝐾) |
43 | | simpl1l 1222 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝐾 ∈ HL) |
44 | 43 | hllatd 37305 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝐾 ∈ Lat) |
45 | | simpl1 1189 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
46 | | simpl2 1190 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑆 ∈ 𝐸) |
47 | | simpl3 1191 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑇 ∈ 𝐸) |
48 | | simpr 484 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) |
49 | 45, 46, 47, 48, 36 | syl121anc 1373 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆 ∘ 𝑇)‘𝑓) = (𝑆‘(𝑇‘𝑓))) |
50 | 45, 47, 48, 25 | syl3anc 1369 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇‘𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) |
51 | 2, 3, 5 | tendocl 38708 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ (𝑇‘𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘(𝑇‘𝑓)) ∈ ((LTrn‘𝐾)‘𝑊)) |
52 | 45, 46, 50, 51 | syl3anc 1369 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘(𝑇‘𝑓)) ∈ ((LTrn‘𝐾)‘𝑊)) |
53 | 49, 52 | eqeltrd 2839 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆 ∘ 𝑇)‘𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) |
54 | 42, 2, 3, 4 | trlcl 38105 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑆 ∘ 𝑇)‘𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑆 ∘ 𝑇)‘𝑓)) ∈ (Base‘𝐾)) |
55 | 45, 53, 54 | syl2anc 583 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑆 ∘ 𝑇)‘𝑓)) ∈ (Base‘𝐾)) |
56 | 42, 2, 3, 4 | trlcl 38105 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇‘𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑇‘𝑓)) ∈ (Base‘𝐾)) |
57 | 45, 50, 56 | syl2anc 583 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑇‘𝑓)) ∈ (Base‘𝐾)) |
58 | 42, 2, 3, 4 | trlcl 38105 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾)) |
59 | 45, 48, 58 | syl2anc 583 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾)) |
60 | | simpl1r 1223 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑊 ∈ 𝐻) |
61 | 43, 60, 46, 47, 48, 36 | syl221anc 1379 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆 ∘ 𝑇)‘𝑓) = (𝑆‘(𝑇‘𝑓))) |
62 | 61 | fveq2d 6760 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑆 ∘ 𝑇)‘𝑓)) = (((trL‘𝐾)‘𝑊)‘(𝑆‘(𝑇‘𝑓)))) |
63 | 1, 2, 3, 4, 5 | tendotp 38702 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ (𝑇‘𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑆‘(𝑇‘𝑓)))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑇‘𝑓))) |
64 | 45, 46, 50, 63 | syl3anc 1369 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑆‘(𝑇‘𝑓)))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑇‘𝑓))) |
65 | 62, 64 | eqbrtrd 5092 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑆 ∘ 𝑇)‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑇‘𝑓))) |
66 | 1, 2, 3, 4, 5 | tendotp 38702 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑇 ∈ 𝐸 ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑇‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓)) |
67 | 45, 47, 48, 66 | syl3anc 1369 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑇‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓)) |
68 | 42, 1, 44, 55, 57, 59, 65, 67 | lattrd 18079 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑆 ∘ 𝑇)‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓)) |
69 | 1, 2, 3, 4, 5, 6, 14, 41, 68 | istendod 38703 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) → (𝑆 ∘ 𝑇) ∈ 𝐸) |