Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendococl Structured version   Visualization version   GIF version

Theorem tendococl 40891
Description: The composition of two trace-preserving endomorphisms (multiplication in the endormorphism ring) is a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.)
Hypotheses
Ref Expression
tendoco.h 𝐻 = (LHyp‘𝐾)
tendoco.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendococl (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → (𝑆𝑇) ∈ 𝐸)

Proof of Theorem tendococl
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . 2 (le‘𝐾) = (le‘𝐾)
2 tendoco.h . 2 𝐻 = (LHyp‘𝐾)
3 eqid 2733 . 2 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
4 eqid 2733 . 2 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
5 tendoco.e . 2 𝐸 = ((TEndo‘𝐾)‘𝑊)
6 simp1 1136 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 simp2 1137 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → 𝑆𝐸)
82, 3, 5tendof 40882 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → 𝑆:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
96, 7, 8syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → 𝑆:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
10 simp3 1138 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → 𝑇𝐸)
112, 3, 5tendof 40882 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇𝐸) → 𝑇:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
126, 10, 11syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → 𝑇:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
13 fco 6680 . . 3 ((𝑆:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊) ∧ 𝑇:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊)) → (𝑆𝑇):((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
149, 12, 13syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → (𝑆𝑇):((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
15 simp11l 1285 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝐾 ∈ HL)
16 simp11r 1286 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑊𝐻)
17 simp13 1206 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑇𝐸)
18 simp2 1137 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑓 ∈ ((LTrn‘𝐾)‘𝑊))
19 simp3 1138 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑔 ∈ ((LTrn‘𝐾)‘𝑊))
202, 3, 5tendovalco 40884 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐸) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊))) → (𝑇‘(𝑓𝑔)) = ((𝑇𝑓) ∘ (𝑇𝑔)))
2115, 16, 17, 18, 19, 20syl32anc 1380 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇‘(𝑓𝑔)) = ((𝑇𝑓) ∘ (𝑇𝑔)))
2221fveq2d 6832 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘(𝑇‘(𝑓𝑔))) = (𝑆‘((𝑇𝑓) ∘ (𝑇𝑔))))
23 simp12 1205 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑆𝐸)
24 simp11 1204 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
252, 3, 5tendocl 40886 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇𝐸𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇𝑓) ∈ ((LTrn‘𝐾)‘𝑊))
2624, 17, 18, 25syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇𝑓) ∈ ((LTrn‘𝐾)‘𝑊))
272, 3, 5tendocl 40886 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇𝐸𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇𝑔) ∈ ((LTrn‘𝐾)‘𝑊))
2824, 17, 19, 27syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇𝑔) ∈ ((LTrn‘𝐾)‘𝑊))
292, 3, 5tendovalco 40884 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑆𝐸) ∧ ((𝑇𝑓) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑇𝑔) ∈ ((LTrn‘𝐾)‘𝑊))) → (𝑆‘((𝑇𝑓) ∘ (𝑇𝑔))) = ((𝑆‘(𝑇𝑓)) ∘ (𝑆‘(𝑇𝑔))))
3015, 16, 23, 26, 28, 29syl32anc 1380 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘((𝑇𝑓) ∘ (𝑇𝑔))) = ((𝑆‘(𝑇𝑓)) ∘ (𝑆‘(𝑇𝑔))))
3122, 30eqtrd 2768 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘(𝑇‘(𝑓𝑔))) = ((𝑆‘(𝑇𝑓)) ∘ (𝑆‘(𝑇𝑔))))
322, 3ltrnco 40838 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑓𝑔) ∈ ((LTrn‘𝐾)‘𝑊))
3324, 18, 19, 32syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑓𝑔) ∈ ((LTrn‘𝐾)‘𝑊))
342, 3, 5tendocoval 40885 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑇𝐸) ∧ (𝑓𝑔) ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘(𝑓𝑔)) = (𝑆‘(𝑇‘(𝑓𝑔))))
3524, 23, 17, 33, 34syl121anc 1377 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘(𝑓𝑔)) = (𝑆‘(𝑇‘(𝑓𝑔))))
362, 3, 5tendocoval 40885 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘𝑓) = (𝑆‘(𝑇𝑓)))
3715, 16, 23, 17, 18, 36syl221anc 1383 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘𝑓) = (𝑆‘(𝑇𝑓)))
382, 3, 5tendocoval 40885 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑇𝐸) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘𝑔) = (𝑆‘(𝑇𝑔)))
3915, 16, 23, 17, 19, 38syl221anc 1383 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘𝑔) = (𝑆‘(𝑇𝑔)))
4037, 39coeq12d 5808 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (((𝑆𝑇)‘𝑓) ∘ ((𝑆𝑇)‘𝑔)) = ((𝑆‘(𝑇𝑓)) ∘ (𝑆‘(𝑇𝑔))))
4131, 35, 403eqtr4d 2778 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘(𝑓𝑔)) = (((𝑆𝑇)‘𝑓) ∘ ((𝑆𝑇)‘𝑔)))
42 eqid 2733 . . 3 (Base‘𝐾) = (Base‘𝐾)
43 simpl1l 1225 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝐾 ∈ HL)
4443hllatd 39483 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝐾 ∈ Lat)
45 simpl1 1192 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
46 simpl2 1193 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑆𝐸)
47 simpl3 1194 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑇𝐸)
48 simpr 484 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑓 ∈ ((LTrn‘𝐾)‘𝑊))
4945, 46, 47, 48, 36syl121anc 1377 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘𝑓) = (𝑆‘(𝑇𝑓)))
5045, 47, 48, 25syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑇𝑓) ∈ ((LTrn‘𝐾)‘𝑊))
512, 3, 5tendocl 40886 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝑇𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘(𝑇𝑓)) ∈ ((LTrn‘𝐾)‘𝑊))
5245, 46, 50, 51syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘(𝑇𝑓)) ∈ ((LTrn‘𝐾)‘𝑊))
5349, 52eqeltrd 2833 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘𝑓) ∈ ((LTrn‘𝐾)‘𝑊))
5442, 2, 3, 4trlcl 40283 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝑇)‘𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑆𝑇)‘𝑓)) ∈ (Base‘𝐾))
5545, 53, 54syl2anc 584 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑆𝑇)‘𝑓)) ∈ (Base‘𝐾))
5642, 2, 3, 4trlcl 40283 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑇𝑓)) ∈ (Base‘𝐾))
5745, 50, 56syl2anc 584 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑇𝑓)) ∈ (Base‘𝐾))
5842, 2, 3, 4trlcl 40283 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾))
5945, 48, 58syl2anc 584 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾))
60 simpl1r 1226 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑊𝐻)
6143, 60, 46, 47, 48, 36syl221anc 1383 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆𝑇)‘𝑓) = (𝑆‘(𝑇𝑓)))
6261fveq2d 6832 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑆𝑇)‘𝑓)) = (((trL‘𝐾)‘𝑊)‘(𝑆‘(𝑇𝑓))))
631, 2, 3, 4, 5tendotp 40880 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝑇𝑓) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑆‘(𝑇𝑓)))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑇𝑓)))
6445, 46, 50, 63syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑆‘(𝑇𝑓)))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑇𝑓)))
6562, 64eqbrtrd 5115 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑆𝑇)‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑇𝑓)))
661, 2, 3, 4, 5tendotp 40880 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇𝐸𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑇𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓))
6745, 47, 48, 66syl3anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑇𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓))
6842, 1, 44, 55, 57, 59, 65, 67lattrd 18354 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑆𝑇)‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓))
691, 2, 3, 4, 5, 6, 14, 41, 68istendod 40881 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → (𝑆𝑇) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113   class class class wbr 5093  ccom 5623  wf 6482  cfv 6486  Basecbs 17122  lecple 17170  HLchlt 39469  LHypclh 40103  LTrncltrn 40220  trLctrl 40277  TEndoctendo 40871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-riotaBAD 39072
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-undef 8209  df-map 8758  df-proset 18202  df-poset 18221  df-plt 18236  df-lub 18252  df-glb 18253  df-join 18254  df-meet 18255  df-p0 18331  df-p1 18332  df-lat 18340  df-clat 18407  df-oposet 39295  df-ol 39297  df-oml 39298  df-covers 39385  df-ats 39386  df-atl 39417  df-cvlat 39441  df-hlat 39470  df-llines 39617  df-lplanes 39618  df-lvols 39619  df-lines 39620  df-psubsp 39622  df-pmap 39623  df-padd 39915  df-lhyp 40107  df-laut 40108  df-ldil 40223  df-ltrn 40224  df-trl 40278  df-tendo 40874
This theorem is referenced by:  tendodi1  40903  tendodi2  40904  tendo0mul  40945  tendo0mulr  40946  tendoconid  40948  cdleml3N  41097  cdleml8  41102  erngdvlem3  41109  erngdvlem3-rN  41117  dvalveclem  41144  dvhvscacl  41222  dvhlveclem  41227  diblss  41289  dicvscacl  41310  dih1dimatlem0  41447
  Copyright terms: Public domain W3C validator