Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendotp Structured version   Visualization version   GIF version

Theorem tendotp 40728
Description: Trace-preserving property of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.)
Hypotheses
Ref Expression
tendoset.l = (le‘𝐾)
tendoset.h 𝐻 = (LHyp‘𝐾)
tendoset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoset.r 𝑅 = ((trL‘𝐾)‘𝑊)
tendoset.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendotp (((𝐾𝑉𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑅‘(𝑆𝐹)) (𝑅𝐹))

Proof of Theorem tendotp
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tendoset.l . . . 4 = (le‘𝐾)
2 tendoset.h . . . 4 𝐻 = (LHyp‘𝐾)
3 tendoset.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 tendoset.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
5 tendoset.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
61, 2, 3, 4, 5istendo 40727 . . 3 ((𝐾𝑉𝑊𝐻) → (𝑆𝐸 ↔ (𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓))))
7 2fveq3 6845 . . . . . 6 (𝑓 = 𝐹 → (𝑅‘(𝑆𝑓)) = (𝑅‘(𝑆𝐹)))
8 fveq2 6840 . . . . . 6 (𝑓 = 𝐹 → (𝑅𝑓) = (𝑅𝐹))
97, 8breq12d 5115 . . . . 5 (𝑓 = 𝐹 → ((𝑅‘(𝑆𝑓)) (𝑅𝑓) ↔ (𝑅‘(𝑆𝐹)) (𝑅𝐹)))
109rspccv 3582 . . . 4 (∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓) → (𝐹𝑇 → (𝑅‘(𝑆𝐹)) (𝑅𝐹)))
11103ad2ant3 1135 . . 3 ((𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓)) → (𝐹𝑇 → (𝑅‘(𝑆𝐹)) (𝑅𝐹)))
126, 11biimtrdi 253 . 2 ((𝐾𝑉𝑊𝐻) → (𝑆𝐸 → (𝐹𝑇 → (𝑅‘(𝑆𝐹)) (𝑅𝐹))))
13123imp 1110 1 (((𝐾𝑉𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑅‘(𝑆𝐹)) (𝑅𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5102  ccom 5635  wf 6495  cfv 6499  lecple 17203  LHypclh 39951  LTrncltrn 40068  trLctrl 40125  TEndoctendo 40719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-tendo 40722
This theorem is referenced by:  tendococl  40739  tendoid  40740  tendopltp  40747  tendoicl  40763  cdlemi1  40785  tendotr  40797  cdleml1N  40943  dva1dim  40952  dialss  41013  diblss  41137
  Copyright terms: Public domain W3C validator