![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendotp | Structured version Visualization version GIF version |
Description: Trace-preserving property of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.) |
Ref | Expression |
---|---|
tendoset.l | β’ β€ = (leβπΎ) |
tendoset.h | β’ π» = (LHypβπΎ) |
tendoset.t | β’ π = ((LTrnβπΎ)βπ) |
tendoset.r | β’ π = ((trLβπΎ)βπ) |
tendoset.e | β’ πΈ = ((TEndoβπΎ)βπ) |
Ref | Expression |
---|---|
tendotp | β’ (((πΎ β π β§ π β π») β§ π β πΈ β§ πΉ β π) β (π β(πβπΉ)) β€ (π βπΉ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendoset.l | . . . 4 β’ β€ = (leβπΎ) | |
2 | tendoset.h | . . . 4 β’ π» = (LHypβπΎ) | |
3 | tendoset.t | . . . 4 β’ π = ((LTrnβπΎ)βπ) | |
4 | tendoset.r | . . . 4 β’ π = ((trLβπΎ)βπ) | |
5 | tendoset.e | . . . 4 β’ πΈ = ((TEndoβπΎ)βπ) | |
6 | 1, 2, 3, 4, 5 | istendo 39626 | . . 3 β’ ((πΎ β π β§ π β π») β (π β πΈ β (π:πβΆπ β§ βπ β π βπ β π (πβ(π β π)) = ((πβπ) β (πβπ)) β§ βπ β π (π β(πβπ)) β€ (π βπ)))) |
7 | 2fveq3 6896 | . . . . . 6 β’ (π = πΉ β (π β(πβπ)) = (π β(πβπΉ))) | |
8 | fveq2 6891 | . . . . . 6 β’ (π = πΉ β (π βπ) = (π βπΉ)) | |
9 | 7, 8 | breq12d 5161 | . . . . 5 β’ (π = πΉ β ((π β(πβπ)) β€ (π βπ) β (π β(πβπΉ)) β€ (π βπΉ))) |
10 | 9 | rspccv 3609 | . . . 4 β’ (βπ β π (π β(πβπ)) β€ (π βπ) β (πΉ β π β (π β(πβπΉ)) β€ (π βπΉ))) |
11 | 10 | 3ad2ant3 1135 | . . 3 β’ ((π:πβΆπ β§ βπ β π βπ β π (πβ(π β π)) = ((πβπ) β (πβπ)) β§ βπ β π (π β(πβπ)) β€ (π βπ)) β (πΉ β π β (π β(πβπΉ)) β€ (π βπΉ))) |
12 | 6, 11 | syl6bi 252 | . 2 β’ ((πΎ β π β§ π β π») β (π β πΈ β (πΉ β π β (π β(πβπΉ)) β€ (π βπΉ)))) |
13 | 12 | 3imp 1111 | 1 β’ (((πΎ β π β§ π β π») β§ π β πΈ β§ πΉ β π) β (π β(πβπΉ)) β€ (π βπΉ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 βwral 3061 class class class wbr 5148 β ccom 5680 βΆwf 6539 βcfv 6543 lecple 17203 LHypclh 38850 LTrncltrn 38967 trLctrl 39024 TEndoctendo 39618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-map 8821 df-tendo 39621 |
This theorem is referenced by: tendococl 39638 tendoid 39639 tendopltp 39646 tendoicl 39662 cdlemi1 39684 tendotr 39696 cdleml1N 39842 dva1dim 39851 dialss 39912 diblss 40036 |
Copyright terms: Public domain | W3C validator |