| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tendotp | Structured version Visualization version GIF version | ||
| Description: Trace-preserving property of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.) |
| Ref | Expression |
|---|---|
| tendoset.l | ⊢ ≤ = (le‘𝐾) |
| tendoset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| tendoset.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| tendoset.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| tendoset.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| tendotp | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑅‘(𝑆‘𝐹)) ≤ (𝑅‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tendoset.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 2 | tendoset.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | tendoset.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 4 | tendoset.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 5 | tendoset.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | istendo 40727 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ 𝐸 ↔ (𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)))) |
| 7 | 2fveq3 6845 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑅‘(𝑆‘𝑓)) = (𝑅‘(𝑆‘𝐹))) | |
| 8 | fveq2 6840 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑅‘𝑓) = (𝑅‘𝐹)) | |
| 9 | 7, 8 | breq12d 5115 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓) ↔ (𝑅‘(𝑆‘𝐹)) ≤ (𝑅‘𝐹))) |
| 10 | 9 | rspccv 3582 | . . . 4 ⊢ (∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓) → (𝐹 ∈ 𝑇 → (𝑅‘(𝑆‘𝐹)) ≤ (𝑅‘𝐹))) |
| 11 | 10 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)) → (𝐹 ∈ 𝑇 → (𝑅‘(𝑆‘𝐹)) ≤ (𝑅‘𝐹))) |
| 12 | 6, 11 | biimtrdi 253 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ 𝐸 → (𝐹 ∈ 𝑇 → (𝑅‘(𝑆‘𝐹)) ≤ (𝑅‘𝐹)))) |
| 13 | 12 | 3imp 1110 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑅‘(𝑆‘𝐹)) ≤ (𝑅‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 class class class wbr 5102 ∘ ccom 5635 ⟶wf 6495 ‘cfv 6499 lecple 17203 LHypclh 39951 LTrncltrn 40068 trLctrl 40125 TEndoctendo 40719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-tendo 40722 |
| This theorem is referenced by: tendococl 40739 tendoid 40740 tendopltp 40747 tendoicl 40763 cdlemi1 40785 tendotr 40797 cdleml1N 40943 dva1dim 40952 dialss 41013 diblss 41137 |
| Copyright terms: Public domain | W3C validator |