Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendotp Structured version   Visualization version   GIF version

Theorem tendotp 40718
Description: Trace-preserving property of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.)
Hypotheses
Ref Expression
tendoset.l = (le‘𝐾)
tendoset.h 𝐻 = (LHyp‘𝐾)
tendoset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoset.r 𝑅 = ((trL‘𝐾)‘𝑊)
tendoset.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendotp (((𝐾𝑉𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑅‘(𝑆𝐹)) (𝑅𝐹))

Proof of Theorem tendotp
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tendoset.l . . . 4 = (le‘𝐾)
2 tendoset.h . . . 4 𝐻 = (LHyp‘𝐾)
3 tendoset.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 tendoset.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
5 tendoset.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
61, 2, 3, 4, 5istendo 40717 . . 3 ((𝐾𝑉𝑊𝐻) → (𝑆𝐸 ↔ (𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓))))
7 2fveq3 6925 . . . . . 6 (𝑓 = 𝐹 → (𝑅‘(𝑆𝑓)) = (𝑅‘(𝑆𝐹)))
8 fveq2 6920 . . . . . 6 (𝑓 = 𝐹 → (𝑅𝑓) = (𝑅𝐹))
97, 8breq12d 5179 . . . . 5 (𝑓 = 𝐹 → ((𝑅‘(𝑆𝑓)) (𝑅𝑓) ↔ (𝑅‘(𝑆𝐹)) (𝑅𝐹)))
109rspccv 3632 . . . 4 (∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓) → (𝐹𝑇 → (𝑅‘(𝑆𝐹)) (𝑅𝐹)))
11103ad2ant3 1135 . . 3 ((𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓)) → (𝐹𝑇 → (𝑅‘(𝑆𝐹)) (𝑅𝐹)))
126, 11biimtrdi 253 . 2 ((𝐾𝑉𝑊𝐻) → (𝑆𝐸 → (𝐹𝑇 → (𝑅‘(𝑆𝐹)) (𝑅𝐹))))
13123imp 1111 1 (((𝐾𝑉𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑅‘(𝑆𝐹)) (𝑅𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067   class class class wbr 5166  ccom 5704  wf 6569  cfv 6573  lecple 17318  LHypclh 39941  LTrncltrn 40058  trLctrl 40115  TEndoctendo 40709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-tendo 40712
This theorem is referenced by:  tendococl  40729  tendoid  40730  tendopltp  40737  tendoicl  40753  cdlemi1  40775  tendotr  40787  cdleml1N  40933  dva1dim  40942  dialss  41003  diblss  41127
  Copyright terms: Public domain W3C validator