| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isup2 | Structured version Visualization version GIF version | ||
| Description: The universal property of a universal pair. (Contributed by Zhi Wang, 24-Sep-2025.) |
| Ref | Expression |
|---|---|
| isup2.b | ⊢ 𝐵 = (Base‘𝐷) |
| isup2.h | ⊢ 𝐻 = (Hom ‘𝐷) |
| isup2.j | ⊢ 𝐽 = (Hom ‘𝐸) |
| isup2.o | ⊢ 𝑂 = (comp‘𝐸) |
| isup2.x | ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀) |
| Ref | Expression |
|---|---|
| isup2 | ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isup2.x | . 2 ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀) | |
| 2 | isup2.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
| 3 | eqid 2730 | . . 3 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 4 | isup2.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐷) | |
| 5 | isup2.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐸) | |
| 6 | isup2.o | . . 3 ⊢ 𝑂 = (comp‘𝐸) | |
| 7 | 1, 3 | uprcl3 49097 | . . 3 ⊢ (𝜑 → 𝑊 ∈ (Base‘𝐸)) |
| 8 | 1 | uprcl2 49096 | . . 3 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| 9 | 1, 2 | uprcl4 49098 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 10 | 1, 5 | uprcl5 49099 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (𝑊𝐽(𝐹‘𝑋))) |
| 11 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | isup 49088 | . 2 ⊢ (𝜑 → (𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀 ↔ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑀))) |
| 12 | 1, 11 | mpbid 232 | 1 ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∀wral 3046 ∃!wreu 3355 〈cop 4603 class class class wbr 5115 ‘cfv 6519 (class class class)co 7394 Basecbs 17185 Hom chom 17237 compcco 17238 UP cup 49081 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-1st 7977 df-2nd 7978 df-func 17826 df-up 49082 |
| This theorem is referenced by: upeu3 49102 upeu4 49103 |
| Copyright terms: Public domain | W3C validator |