Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isup2 Structured version   Visualization version   GIF version

Theorem isup2 49180
Description: The universal property of a universal pair. (Contributed by Zhi Wang, 24-Sep-2025.)
Hypotheses
Ref Expression
isup2.b 𝐵 = (Base‘𝐷)
isup2.h 𝐻 = (Hom ‘𝐷)
isup2.j 𝐽 = (Hom ‘𝐸)
isup2.o 𝑂 = (comp‘𝐸)
isup2.x (𝜑𝑋(⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊)𝑀)
Assertion
Ref Expression
isup2 (𝜑 → ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀))
Distinct variable groups:   𝐵,𝑔,𝑘,𝑦   𝐷,𝑔,𝑘,𝑦   𝑔,𝐸,𝑘,𝑦   𝑔,𝐹,𝑘,𝑦   𝑔,𝐺,𝑘,𝑦   𝑔,𝐻,𝑘,𝑦   𝑔,𝐽,𝑘,𝑦   𝑔,𝑀,𝑘,𝑦   𝑔,𝑂,𝑘,𝑦   𝑔,𝑊,𝑘,𝑦   𝑔,𝑋,𝑘,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑔,𝑘)

Proof of Theorem isup2
StepHypRef Expression
1 isup2.x . 2 (𝜑𝑋(⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊)𝑀)
2 isup2.b . . 3 𝐵 = (Base‘𝐷)
3 eqid 2729 . . 3 (Base‘𝐸) = (Base‘𝐸)
4 isup2.h . . 3 𝐻 = (Hom ‘𝐷)
5 isup2.j . . 3 𝐽 = (Hom ‘𝐸)
6 isup2.o . . 3 𝑂 = (comp‘𝐸)
71, 3uprcl3 49176 . . 3 (𝜑𝑊 ∈ (Base‘𝐸))
81uprcl2 49175 . . 3 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
91, 2uprcl4 49177 . . 3 (𝜑𝑋𝐵)
101, 5uprcl5 49178 . . 3 (𝜑𝑀 ∈ (𝑊𝐽(𝐹𝑋)))
112, 3, 4, 5, 6, 7, 8, 9, 10isup 49166 . 2 (𝜑 → (𝑋(⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊)𝑀 ↔ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀)))
121, 11mpbid 232 1 (𝜑 → ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wral 3044  ∃!wreu 3343  cop 4585   class class class wbr 5095  cfv 6486  (class class class)co 7353  Basecbs 17138  Hom chom 17190  compcco 17191   UP cup 49159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-func 17783  df-up 49160
This theorem is referenced by:  upeu3  49181  upeu4  49182
  Copyright terms: Public domain W3C validator